BIOLOGY

1. Which one of the following	g statements about second mes	ssengers is correct?	
A These are secondary me	tabolites produced by plants in	n response to an infection.	
	erated during secondary steps		
	ecules generated during second		
	h help digest the secondary me		
		1	
2. The glomerular filtration is	rate is NOT affected by		
A increased dietary uptake			
B total volume of the bloo	d flowing per minute through	the Bowman's capsule.	ner lementele sell [8]
C increased Renin product	ion from Juxta glomerular cel	ls.	
D increased supply of nutr	ients to the blood in afferent a	arteriole.	
haploid male with red eyes is c	e diploid females from fertilize crossed with a white eyed femal one of the following statements	e. Assuming that the red-eye	om unfertilized ones. Such a colour mutation is dominant
All females will have wh	nite eyes and all males will have	e red eyes.	
Tonas and Tonas	d eyes and all males will have		
	ave red and the other half will		
	have red and the other half wi		Al estim our result [A]
ephrin hormones			olow
4. Match the entries in colur	nn I and II and choose the cor	rrect pairs from the choices of	elow.
Column I			
a. High BOD b. Ozone hole	 Skin cancer Greenhouse gas 		
c. El Niño effect	3. Food chain		
d. Biomagnification	4. Water pollution		
	thus say, as specify be activiting	.m. 2. Site .l fo	 b. Endoplasmir, Bukicula
A a-1, b-2, c-4, d-3	B a-2, b-3, c-1, d-4	C a-3, b-1, c-4, d-3	D a-4, b-1, c-2, d-3
5. DNA fragments of 100 baccorrect arrangement of the fra	se pairs (bp), 300 bp and 500 lagments separated on the gel i	op were separated by agarose n the increasing order of the	gel electrophoresis. Pick the ir migration from the wells.
A 500 bp < 300 bp < 100	bp	$\boxed{\text{C}}$ 100 bp > 300 bp > 50	0 bp
B 100 bp < 300 bp < 500		\boxed{D} 500 bp > 300 bp > 10	
6. Meiosis involves:			
			:
-	lication but one cycle each of o		sion.
	A replication, cell division and		
	replication, cell division and a		
D One cycle of DNA repli	cation but two cycles each of o	cell division and nuclear divis	sion.
7. Which of the following is	exclusively marine?		
A Cnidar	ria B Echinodermata	C Annelida D	Porifera
8. How many histone molecular	ules are required to wrap roug	hly 60,000 base pairs (bp) of	DNA?
A 2.4	$\times 10^{1}$ B 2.4×10^{3}	\boxed{C} 2.4 × 10 ² \boxed{D}	2.4×10^4
11 2.1	2017.10		

the

9. All species of vultures in India are threatened with extinuing go extinct?	action. What is the most likely outcome if all vultures in
A Number of sparrows will increase.	C Nutrient recycling will be hampered.
B Herbivore numbers will increase.	D Soil pollution will decrease.
10. A gene is inserted into the PvuII site of the cloning Which one of the following statements is then true?	vector (given below) and transformed into $\it E.~coli$ cells.
 A Recombinants can be selected by plating on ampicillin containing medium. B Recombinants can be selected by plating on tetracy- 	Pvul BamHI Sall
cline containing medium. C Recombinants cannot be selected by plating either on ampicillin or tetracycline containing medium.	E. coli Cloning vector
D Recombinants can be selected by plating simultaneously on ampicillin and tetracycline containing medium.	ori rop Pyull
11. What are Association areas?	
A These are areas in the cerebral cortex with both sensor B These are areas in the adrenal medulla secreting both C These are areas in the hepatic cortex having localised D These are areas in the renal cortex with intertwined H	epinephrin and norepinephrin hormones. bile ducts and blood capillaries.
12. Match the entries in column I and II and choose the co	prrect pairs from below:
Column I a. Golgi b. Endoplasmic Reticulum c. Cytoskeleton d. Mitochondria Column II 1. Divide by fission 2. Site of formation 3. Steroidal horm 4. Mechanical sup	on of glycoproteins and glycolipids one synthesis site
A a-2, b-3, c-4, d-1 B a-2, b-1, c-4, d-3	C a-1, b-3, c-4, d-2 D a-3, b-4, c-1, d-2
13. Which of the following antibodies is present abunda human lactation?	antly in the colostrum secreted during the initial days of
A IgD B IgG	C IgE D IgA
14. Which compound given below inhibits cholesterol synt	hesis in humans?
A Streptokinase B Statins	C Penicillin D Cyclosporin A

15. In the given graph curves A, B and C represent relation between partial pressure of oxygen (p_{O_2}) and saturation of hemoglobin with oxygen. If curve A represents condition of blood in a regular artery then please select the correct statement from below.

- A Curve C represents blood present in right ventricle.
- B Curve C represents blood present in left ventricle.
- Curve B represents blood present in pulmonary vein.
- D Curve B represents blood present in left ventricle.

CHEMISTRY

16. The melting point of Mn₄N is

A	One thind	+0	that	of	manganese	motal
A	One-third	to	that	OI	manganese	metal.

C Higher than that of manganese metal.

B Same as that of manganese metal.

D One-fourth to that of manganese metal.

17. Which of the following statements is valid for the dipole moment (μ) values of cis- and trans- F_2N_2 ?

 \fbox{A} μ value for $\emph{cis-} F_2 N_2 > \mu$ value for $\emph{trans-} F_2 N_2$

 $\boxed{\rm B}$ both $\it cis$ -F $_2{\rm N}_2$ and $\it trans$ -F $_2{\rm N}_2$ will have equal nonzero μ

 $\boxed{\mathbb{C}}$ μ value for $\mathit{trans}\text{-}\mathrm{F}_2\mathrm{N}_2>\mu$ value for $\mathit{cis}\text{-}\mathrm{F}_2\mathrm{N}_2$

 $\boxed{\mathrm{D}}$ both $cis\text{-}\mathrm{F}_2\mathrm{N}_2$ and $trans\text{-}\mathrm{F}_2\mathrm{N}_2$ will have zero μ

18. Which of the following statements is correct about tetrahedral manganate and permanganate ions?

A Permanganate is purple and paramagnetic

C Manganate is green and paramagnetic

B Permanganate is green and diamagnetic

D Manganate is purple and paramagnetic

19. Among the lanthanides Eu, Tb, Er and Dy, which one readily forms stable divalent ions?

A Tb

B Dy

C Er

D Eu

20. The correct order for decreasing basic strength of the molecules PH₃, AsH₃, SbH₃, and BiH₃ is:

 $\boxed{A} \ PH_3 > SbH_3 > BiH_3 > AsH_3$

 $\boxed{\text{C}} \; \text{BiH}_3 > \text{SbH}_3 > \text{AsH}_3 > \text{PH}_3$

 \fbox{B} $PH_3 > AsH_3 > SbH_3 > BiH_3$

 $\boxed{D} \; \mathrm{BiH_3} > \mathrm{AsH_3} > \mathrm{SbH_3} > \mathrm{PH_3}$

21. In the following reaction sequence,

the major products \mathbf{X} and \mathbf{Z} are

$$X = \bigvee_{NO_2}^{CH_3} \text{ and } Z = \bigvee_{NO_2}^{CH_3} NO_2$$

$$X = \bigvee_{NO_2}^{CH_$$

22. Select the correct order of basicity for the following compounds.

A (iv) > (iii) > (i) > (i)

C (i) > (ii) > (iv) > (iii)

 $\boxed{\mathrm{B}}$ (ii) > (i) > (iv) > (iii)

D (iii) > (ii) > (iv)

$$CH_3$$
- CH = CH_2 + HBr X Major CH_3 - CH = CH_2 + HBr $(C_6H_5CO)_2O_2$ Y Major

Which of the following is the correct pair of intermediates responsible for the formation of X and Y as the major products, in their respective reactions shown above?

A 2° carbocation and 1° radical

C 1° carbocation and 2° radical

B 1° carbocation and 1° radical

- D 2° carbocation and 2° radical
- 24. In the following reaction sequence, identify the relationship between the products Q and S:

A structural isomers

C optical isomers

B geometrical isomers

- D identical products
- 25. Arrange the following compounds in increasing order of their rate of reaction towards hydroxyl ion (OH -).

$$A$$
 (iv) < (ii) < (iii) < (i)

$$C$$
 (iii) < (iv) < (ii) < (i)

$$\boxed{B}$$
 (i) < (iii) < (ii) < (iv)

$$\boxed{D}$$
 (ii) < (iv) < (iii) < (i)

26. The kinetic energy of the photoelectrons ejected from a metal on irradiation with light of frequency 3.8×10^{16} Hz is K. When irradiated with light of frequency 2.4×10^{16} Hz, the kinetic energy of the photoelectrons becomes K/2. What is the threshold frequency (ν_0) of the metal?

$$\boxed{A}$$
 1.5 × 10¹⁶ Hz

$$\boxed{\rm B}$$
 1.2 × 10¹⁶ Hz

$$\boxed{\text{C}}$$
 2.0 × 10¹⁶ Hz

$$D = 1.0 \times 10^{16} \text{ Hz}$$

27. The heat of neutralization of the following reaction is $-57.1 \text{ kJ mol}^{-1}$.

NaOH (aq) + HCl (aq)
$$\rightarrow$$
 NaCl (aq) + H₂O (l)

Which one of the following processes is mainly responsible for the heat released?

$$\boxed{\mathrm{A}}\ \mathrm{H^+} + \mathrm{OH^-} \rightarrow \mathrm{H_2O}$$

$$\boxed{C}$$
 Na⁺ + Cl⁻ \rightarrow NaCl

$$B \text{ NaCl} \rightarrow \text{Na}^+ + \text{Cl}^-$$

$$\boxed{\mathrm{D}}$$
 NaOH \rightarrow Na⁺ + OH⁻

28. At 25 °C, the standard reduction potential for the half-cell reaction

$$Zn (s) + 2H^+ (aq) \rightarrow Zn^{2+} (aq) + H_2 (g)$$

is 0.28 V. What is the reduction potential of the half-cell reaction in 10M [H⁺] concentration, assuming all other species to be at unit concentration? [Universal gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$; Faraday constant, $F = 96500 \text{ C mol}^{-1}$]

A 0.339 V B 0.870 V C 0.398 V D 0.290 V

29. In a cubic-close packed structure containing \mathbf{X} , \mathbf{Y} and \mathbf{Z} atoms, if \mathbf{Z} occupies all the face centers, \mathbf{X} occupies all the corners and \mathbf{Y} occupies the body center of the cube, what is the formula of this compound?

30. At 298 K, the vapour pressure of an ideal solution containing 1 mol of liquid **L1** and 2 mol of liquid **L2** is 500 mm Hg. When 2 mol of **L1** is added to this solution, the vapour pressure of the solution increases by 5%. What are the respective vapour pressures (in mm Hg) of **L1** and **L2** in their pure states at 298 K?

A 563 and 469 B 513 and 494 C 500 and 1250 D 500 and 500

MATHEMATICS
31. Let z be a given complex number with modulus $ z < 1$. Then the set $\left\{ \frac{z-w}{1-\overline{z}w} : w = 1, w \in \mathbb{C} \right\}$ is a
A Straight line. B Hyperbola. C Circle. D Parabola.
32. Let f, g, h be functions from \mathbb{R} to \mathbb{R} , with f and g invertible. Which of the following is NOT always true?
A $f \circ (g + h) = (f \circ g) + (f \circ h)$. B $f \circ (g \circ h) = (f \circ g) \circ h$. C $(f \cdot g) \circ h = (f \circ h) \cdot (g \circ h)$. D $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.
33. Consider a matrix $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & x & y \\ 4 & 3 & 5 \end{pmatrix}$ with integer entries and determinant -5 . Then a possible value for y is
A 10. B 6. C 8. D 1.
34. The integral $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{(1+\sqrt{ x })\sin^2(x) + \sin(x)}{1+\sqrt{ x }} \right) dx$ is equal to
$f A = 0.$ $f B = \pi.$ $f C = rac{\pi}{2}.$ $f D = 2\pi.$
35. Let ℓ_0 be the line defined by the vector equation $\hat{i}+2\hat{j}+3\hat{k}+\lambda(\hat{i}+\hat{j}+\hat{k})$, with λ real. Which of the following vector equations, with μ real, defines a line which intersects ℓ_0 ? A $2\hat{i}+3\hat{j}+\mu(\hat{i}-\hat{j})$. B $3\hat{i}-2\hat{j}+\hat{k}+\mu(-\hat{i}+\hat{j})$. C $\hat{i}+3\hat{j}+5\hat{k}+\mu(2\hat{i}+3\hat{j}+4\hat{k})$. D $-\hat{i}-2\hat{j}-3\hat{k}+\mu(-\hat{i}-\hat{j}-\hat{k})$.
36. For a given matrix, let R_i denote the sum of all entries in its i^{th} row and C_j denote the sum of all entries in its j^{th} column. How many 3×3 matrices with nonnegative integer entries are there such that $R_1 = R_2 = C_1 = C_2 = 2$ and $R_3 = C_3 = 1$?
A 12. B 11. C 14. D 13.
37. Let $P(n)$ be a statement for each natural number n . Assume that $P(n+1)$ is a true statement whenever $P(n)$ is a true statement. Suppose $P(2018)$ is true. Then which one of the following statements is true?
A $P(n)$ is true for exactly two values of n .
$\boxed{\mathrm{B}}$ $P(n)$ is false for at most finitely many values of n .
C $P(n)$ is false for infinitely many values of n .
$\overline{\mathbb{D}} P(n)$ is true for all n .
38. Let $y = f(x)$ be the equation of the curve passing through the point $(1,1)$ having slope $\log_e x$ for positive values of x . Then the curve
$\boxed{\mathbf{A}}$ passes through the point $(2, 3 + \log_e 4)$.
\blacksquare passes through the point $(2, \log_c 4)$.
$\boxed{\mathbb{C}}$ passes through the point $(2, 3 - \log_e 4)$.
\boxed{D} does not pass through the point $(2, -\log_e 4)$.

39. How many functions $f: \mathbb{R} \to \mathbb{R}$ satisfy $f(1) = 10$ and $ f(x) - f(y) = x - y $ for all $x, y \in \mathbb{R}$:
A 2. B 3. C 1. D 4.
40. For a real number a, let $\tan^{-1}(a)$ denote the real number θ , $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$; such that $\tan(\theta) = a$. The function
$f(x) = \tan^{-1}(bx^2 + 2bx + c)$, where b and c are positive real numbers, is increasing on
$oxed{A}$ $(-1,\infty)$. $oxed{\mathbb{D}}$ $(-2,b)$. $oxed{\mathbb{C}}$ $(-2,2)$. $oxed{\mathbb{D}}$ $(-\infty,c)$.
41. A number is picked uniformly randomly from the set of five digit natural numbers. What is the probability that at least one of the digits of the number thus picked is 0?
42. How many functions $f: \mathbb{N} \longrightarrow \mathbb{N}$ satisfy
$\operatorname{lcm}(f(n), n) - \operatorname{hcf}(f(n), n) < 5?$
Here 'lcm' denotes the least common multiple and 'hcf' denotes the highest common factor.
A 0. B 1. C Infinitely many. D More than one but finitely many.
43. Let a, b be distinct positive real numbers, whose geometric mean equals $\frac{a^{t-99}+b^{t-99}}{a^{t-100}+b^{t-100}}$. Then t must equal
A $\frac{199}{2}$. B $\frac{99}{2}$. C 199. D 99.
44. Let f and g be two functions on $\mathbb R$ defined by
$f(x) = \sqrt{x^2 + 1} - x$
$g(x) = \sin(\pi e^{1-x}).$
Define a function $h: \mathbb{R} \to \mathbb{R}$ by $h(x) = \max\{f(x), g(x)\}$. Then what can be said about $\lim_{x \to \infty} h(x)$?
A It does not exist.
B It is equal to 0.
$\overline{\mathbb{C}}$ It is equal to -1 .
D It is equal to 1.
45. Let \mathcal{P} denote a parabola in the plane and let a point $A \in \mathcal{P}$ be given. How many lines ℓ in the plane satisfy $\ell \cap \mathcal{P} = \{A\}$?
A 2. B 1. C Infinitely many. D 0.
B Plat is this in a most finitely many valoes of m.
[C] P(n) is false for infinitely many values of m

PHYSICS

46. A cylindrical vessel of radius 5 cm is filled with water up to a height of 20 cm. The cylinder is open to atmosphere at the top. A small aperture of radius 2 mm is made on the side of the cylinder at a height of 5 cm from the bottom of the vessel. For approximately how long will water leak out of the aperture?

A 1 minute and 48 seconds

C 2 minutes and 48 seconds

B 2 minutes and 11 seconds

D 1 minute and 11 seconds

47. Two simple pendulums of length 1 m each, with bobs having masses 1 kg and 2 kg, are hanging from the ceiling of an elevator. The elevator starts moving vertically downwards with acceleration g/10. Assuming $g = 10 \text{ m/s}^2$, approximately what are the time periods of the two pendulums?

A 2.1 s and 3.0 s.

C 1.9 s and 1.9 s.

B 2.1 s and 2.1 s.

D 1.9 s and 2.7 s.

48. What is the probability that a radioactive nucleus will not have decayed after a time equal to twice its half-life?

A 0.50

B 0.75

C 0.01

D 0.25

49. An electric dipole having point charges +q and -q, separated by a fixed distance d is kept under the influence of a uniform electric field E, such that the axis of the dipole is making an angle $\theta = 45^{\circ}$ with the direction of E, as shown in the figure. If the electric dipole is allowed to rotate in the xy-plane with its center being stationary, what is the magnitude of the net torque acting on the electric dipole?

- $\boxed{\mathbf{A}} qdE$
- \Box $qdE/\sqrt{2}$
- $C \sqrt{2}/(qdE)$
- $D \sqrt{2q}dE$

50. In the circuit shown, what is the approximate current passing through the resistor R_3 ?

- A 0.75 A
- B -0.2 A
- C 0.84 A
- D 0.28 A

51. An electromagnetic wave propagates along z-direction. The corresponding electric field is along x-direction. Which of the following is an acceptable direction for the magnetic field, considering \hat{x} , \hat{y} , and \hat{z} to be the unit vectors in a Cartesian co-ordinate system?

 $\boxed{\mathbf{A}} \frac{1}{\sqrt{2}}(\hat{x}+\hat{z})$

 $\boxed{\mathbf{C}} \ \ \frac{1}{\sqrt{3}}(\hat{x}+\hat{y}+\hat{z})$

 $\boxed{\mathbf{B}} \frac{1}{\sqrt{2}}(\hat{y}+\hat{z})$

 $\boxed{\mathbf{D}} \ \tfrac{1}{\sqrt{2}} (\hat{x} + \hat{y})$

52. An iron ring of radius 2.1 m is to be fitted on top of the rim of a wheel of radius 2.121 m. The coefficient of volume expansion for iron is 3.6×10^{-5} K⁻¹. By approximately how much should the temperature of the iron ring be increased so that it fits the rim of the wheel?

A 532 °C B 833 °C C 278 °C D 378 °C

53. An object of mass 100 g is sliding under gravity from point A to point B on a frictionless slide from a height of 5 m, as shown in the figure. After what distance will the object stop on the following flat track beyond point B if the coefficient of kinetic friction between the flat track and the object is 0.5?

B 20 m

C 10 m

D 1 m

54. A current of 45 A is passing through an infinitely long wire which lies along the axis of an infinitely long solenoid of radius 1 cm. The magnetic field produced by the solenoid in the direction of the current in the wire is 4 mT. What is the approximate magnitude of the resultant magnetic field at a point 3 mm radially away from the solenoid axis? (Use $\mu_o = 4\pi \times 10^{-7}$ T m/A.)

[A] 5 mT [B] 1 mT [C] 7 mT [D] 3 mT

55. For a p-n junction normal diode and a Zener diode, which of the following statements is true?

- A The Zener diode has thicker depletion region and normal diode has higher electric field across the junction
- B The normal diode has thicker depletion region and Zener diode has higher electric field across the junc-

tion.

- The Zener diode has thicker depletion region and higher electric field across the junction:
- D The normal diode has thicker depletion region and higher electric field across the junction.

56. Starting from rest, a car moves with a constant acceleration, and comes to a momentary stop with the same constant deceleration. Subsequently, it reverses its motion and returns to its original position in a similar manner. Which one of the following graphs of momentum (p) versus time (t) best describes the motion of the car?

57. λ_2 and λ_4 are the wavelengths of photons required to excite the Hydrogen atom from its ground state to its second and fourth excited states, respectively. What is the correct ratio λ_2/λ_4 ?

A 0.25

B 4.0

C 1.25

D 0.8

58. A jeweler is holding a gold chain of uniform mass per unit length hanging vertically just above a weighing scale as shown in the figure. He offers to charge the customer for half of the maximum reading of the scale, after he releases the chain. What percentage more than the actual price does the customer pay if he agrees to the offer?

A 20

B 5

C 25

D 50

59. A planet of mass m moves in an elliptical path around the Sun (which is at one of the foci of the ellipse), so that its maximum and minimum distances from the Sun are $r_{\rm max}$ and $r_{\rm min}$, respectively. Taking the gravitational constant to be G and the mass of the Sun to be M_s , what is the angular momentum of the planet relative to the center of the Sun?

$$\begin{split} & \boxed{\mathbf{A}} \ 2G \left[M_s^2 m r_{\max} r_{\min} \ / \left(r_{\max} + r_{\min} \right) \right]^{1/2} \\ & \boxed{\mathbf{B}} \ \left[2G M_s m^2 r_{\max} r_{\min} \ / \left(r_{\max} + r_{\min} \right) \right]^{1/2} \end{split}$$

$$\boxed{\mathbf{B}} \left[2GM_s m^2 r_{\text{max}} r_{\text{min}} / (r_{\text{max}} + r_{\text{min}}) \right]^{1/2}$$

$$\boxed{\mathbf{D}} \left[2GM_s m^2 r_{\text{max}} r_{\text{min}} / (r_{\text{max}} - r_{\text{min}}) \right]^{1/2}$$

Two posts of heights 20 m and 10 m are 60 m apart, as shown in the figure. Food grains are continuously distributed between the two posts. A crow sitting on top of the taller post wants to pick up a grain and sit on the other post. What should be the distance of the grain it picks from the bottom of the taller post to minimize the total flight length?

- A 30 m
- B 50 m
- C 40 m
- D 20 m

