CAT 2017 QA Slot 1 Answer Key

QNo:- 67 ,Correct Answer:- 20

Explanation:- Let Barun's age be 10x. Arun's age is 4x. The difference of these ages in 6x, a constant. When Arun's age is 50% of Barun's age, this difference also would be 50% ie Barun's age, at that stage would be 12x. It would be increase by 20%.

QNo:- 68 ,Correct Answer:- 15

Explanation:- Let the number of days required to complete the job be n.

1 person works on day 1, 2 on day 2, 3 on day 3, n on day n.

Each person has the same efficiency.

Work =
$$1\left(\frac{1}{120}\right) + 2\left(\frac{1}{120}\right) + 3\left(\frac{1}{120}\right) + \dots + n\left(\frac{1}{120}\right)$$
.

This is also equal to 1.

$$\frac{1}{120} + \frac{2}{120} + \frac{3}{120} + \dots + \frac{n}{120} = 1$$

$$\Sigma n = 120$$

n = 15.

QNo:- 69 ,Correct Answer:- 11

Explanation:- Number of people in the group cannot exceed $\frac{630}{53}$ i.e., 11.8.

Maximum possible number of people in the group = 11.

QNo:- 70 ,Correct Answer:- 20

Explanation:- The speed in the second case is 5/4 times the speed in the first case. Therefore, the time would be 4/5 times the time, i.e., 1/5 less. This one fifth is 20 min. Therefore, the time taken in the first case is 100 min.

The distance =
$$(12)\left(\frac{5}{3}\right)$$
 km = 20 km

QNo:- 71 ,Correct Answer:- 70000

Explanation:- Let the total monthly savings be S.

Investment in FD =
$$\frac{50}{100}$$
S.

Investment in stocks =
$$\frac{30}{100} \left(S - \frac{50}{100} S \right) = \frac{15}{100} S$$

Investment in savings bank account =
$$\frac{35}{100}$$
 S

$$\frac{35}{100}S + \frac{50}{100}S = 59500$$

$$S = 70000$$

QNo:- 72 ,Correct Answer:- D

Explanation:- Let the retail price be 100.

Cost price =
$$\frac{85}{1.02} = \frac{500}{6}$$

In order to make a profit of 20%, the selling price

$$=\frac{500}{6}(1.2)=100$$

The seller must sell at the retail price

QNo:- 73 ,Correct Answer:- B

Explanation:- Let the speed of the boat in still water and the speed of the river be u and v respectively.

$$\frac{d}{2x+y} + \frac{d}{2x-y} = \frac{1}{4} \left(\frac{d}{x+y} + \frac{d}{x-y} \right)$$

$$\begin{aligned} &\frac{d(4x)}{4x^2 - y^2} = \frac{1}{4} \left(\frac{d(2x)}{x^2 - y^2} \right) \\ &8(x^2 - y^2) = 4x^2 - y^2 \\ &\frac{x^2}{y^2} = \frac{7}{4} \end{aligned}$$

$$8(x^2 - v^2) = 4x^2 - v^2$$

$$\frac{x^2}{v^2} = \frac{7}{4}$$

$$\frac{x}{y} = \frac{\sqrt{7}}{2}$$

QNo:- 74 ,Correct Answer:- A

Explanation:- The data is given below

C1	C2	C3	C4	C5
9	10	8		
	18		19	
81	90	72	95	100

C5 - C1 = 19. The numbers above are the actual profits (and not just the ratio). The total profit = 438 crore.

QNo:- 75 ,Correct Answer:- D

Explanation:- Let the number of boys appearing for the admission test be b.

Percentage of candidates who get admission =

Percentage of canadates who g
$$\frac{30}{100}(2b) + \frac{45}{100}b$$

$$2b+b$$
(100)% = 35%

65% of the candidates do not get admission.

QNo:- 76 ,Correct Answer:- A

Explanation:- Let the total number of popcorn packets in stock be T.

Total number of chips packets in stock = T

Required ratio =
$$\frac{16}{40}$$
T: $\frac{14}{35}$ T = 1:1

QNo:- 77 ,Correct Answer:- B

Explanation:- Let the price of each good mango be g.

Price of each medium quality mango = $\frac{9}{2}$.

Total cost price =
$$80g + 40\left(\frac{g}{2}\right) = 100g$$

Total selling price =
$$120(0.9g) = 108g$$

Overall profit = 8%

QNo:- 78 ,Correct Answer:- D

Explanation:- Let the printed price be p.

If 40% discount is given, selling price = 0.6(60p) = 36p

In order to make a profit of 20%, the selling price

Total cost price

$$=>36p/1.2=30p$$

Ten toys are destroyed in the fire.

The remaining toys are sold at a price such that the same amount of profit is made as in the conditional case.

Profit made on remaining toys = 6p

Total selling price of remaining toys = 36p

Discount that should be given = 50p - 36p = 14p

Discount% = 28%

QNo:- 79 ,Correct Answer:- D

Explanation:
$$\left(\frac{a+3}{b}\right)^2 = 9$$
 and $\left(\frac{a-1}{b-1}\right)^2 = 4$.

We get 4 cases

$$a + 3 = 3b$$
 $a + 3 = 3b$
 $a - 1 = 2b - 2$ $a - 1 = -2b + 2$
 $a + 3 = -3b$ $a + 3 = -3b$
 $a - 1 = 2b - 2$ $a - 1 = -2b + 2$

Subtracting the second equation from the first we get,

	I	П	III	IV
4	b+2	5b-2	-5b+2	-b – 2

 $I \Rightarrow b = 2$, a = 3 Rejected

II, III \Rightarrow b is not an integer. Rejected

$$IV \Rightarrow b = -6$$
, $a = 15$

$$\frac{a^2}{b^2} = \left(\frac{15}{6}\right)^2 = \frac{25}{4}$$

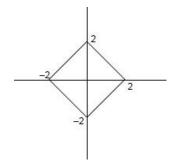
QNo:- 80 ,Correct Answer:- A

Explanation:- Let the average score of the boys in the midsemester examination be b.

Average score of the girls = b + 5

In the final exam, average score of the girls = b + 5 - 3 = b + 2.

Average score of the entire class increased by 2


and is hence
$$\frac{20b+30(b+5)}{50}+2 \text{ i.e. } b+5$$

Average score of the boys

$$\frac{50(b+5)-30(b+2)}{20} = b+9.5$$

Increases in the average of boys is 9.5.

QNo:- 81 ,Correct Answer:- C

Explanation:-

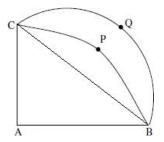
The closed region bounded by |ax| + |by| = c in the two-dimensional plane has x-intercepts of

$$\frac{c}{|a|}$$
 and y- intercepts of $\frac{c}{|b|}$.

This is in general a rhombus. In the given question, we have a square which has each of its diagonals as 4.

Area =
$$\frac{1}{2}(4)(4)=8$$

QNo:- 82 ,Correct Answer:- B


Explanation:- The medians of a triangle divide the triangle into six parts of equal area.

Area of GBC = $\frac{1}{3}$ (Area of the triangle)

$$= \frac{1}{3}\sqrt{5(5-a)(s-b)(s-c)} = \frac{250}{\sqrt{3}}$$

Area of the remaining portion = $2\left(\frac{250}{\sqrt{3}}\right) = \frac{500}{\sqrt{3}}$

QNo:- 83 ,Correct Answer:- B

Explanation:-

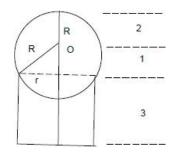
Let AB = a (a = 6)

CQB is a semicircle of radius $\frac{a}{\sqrt{2}}$

CPB is a quarter circle (quadrant) of radius a

 \therefore Area of semicircle = $\frac{\pi a^2}{4}$

Area of quadrant = $\frac{\pi a^2}{4}$


: Area of region enclosed by BPC, BQC = Area of \triangle ABC = 18.

QNo:- 84 ,Correct Answer:- B

Explanation:-

The volumes of the 5 smaller cubes and the original big one are in the ratio 1:1:8:27:27:64. Therefore, the sides are in the ratio 1:1:2:3:3:4 while the areas are in the ratio 1:1:4:9:9:16. The sum of the areas of the 5 smaller cubes is 24 parts while that of the big cube is 16 parts. The sum is 50% greater.

QNo:- 85 ,Correct Answer:- 6

Explanation:-

The height of the cylinder (h) = 3

The volume = 9π

$$\pi r^2 h = 9\pi \Rightarrow r = \sqrt{3}$$

The radius of the ball (R) = 2

The height of O, the centre of the ball, above the line representing the top of the cylinder is say a.

: The height of the topmost point of the ball from the base of the cylinder is h + a + R = 3 + 1 + 2 = 6

QNo:- 86 ,Correct Answer:- 24

Explanation:- In a 3, 4, 5 triangle, the length of the altitude to the hypotenuse = 3(4)/5 = 2.4. Therefore, in a 15, 20, 25 triangle, it is 12. This is the shortest distance from A to BC. At 60 km/hr, i.e., 1 km/min, it would take 24 min to cover 24 km.

QNo:- 87 ,Correct Answer:- D

Explanation:- $log_3 x = a \Rightarrow x = 3^a$ $log_{12} y = a \Rightarrow y = 12^a$ $\therefore xy = 36^a \text{ and } xy = G = 6^a$ $\therefore log_6 G = a$

QNo:- 88 ,Correct Answer:- D

Explanation:
$$x + 1 = x^2 \Rightarrow x^2 - x - 1 = 0 \Rightarrow x = \frac{1 + \sqrt{5}}{2} (\because x > 0)$$

Also, $x^2 = x + 1 \Rightarrow x^4 = x^2 + 2x + 1 = 3x + 2$
 $\Rightarrow 2x^4 = 6x + 4 = 3 + 3\sqrt{5} + 4 = 7 + 3\sqrt{5}$

QNo:- 89 ,Correct Answer:- C

0.008 = $\frac{8}{1000}$ = 5^{-3} Explanation:-∴ $\log_{0.008}\sqrt{5} = \frac{1/2}{-3} = \frac{-1}{6}$ and $\log_{\sqrt{3}} 81 = \frac{4}{1/2} = 8$ ∴ The given expression is $\frac{5}{6}$

QNo:- 90 ,Correct Answer:- B

Explanation:
$$9^{2x-1} - 9^{2x-2} = 9^{2x-2}(9-1) = 1944 = 8(243) = 8(9^{2.5})$$

 $\therefore 2x-2=2.5 \implies x=\frac{4.5}{2}=\frac{9}{4}$

QNo:- 91 ,Correct Answer:- B

Explanation:- x = 25 + y + z. The possible values of x, y, z and the corresponding number of values of y, z are tabulated below(x, y, z are positive integers). We see that $27 \le x \le 40$

	<u> </u>		
x	у	Z	No of values of (x, y)
27	1	1	1
	•	•	•
28	1,2	2,1	2
-	-	-	-
38	1, 2	12, 1	12
39	2, 12,	12, 2	11
40	3, 12	12, 3	10

The number of solutions is $1 + 2 + \dots + 12 + 11 + 10 = 78 + 21 = 99$

QNo:- 92 ,Correct Answer:- 11

Explanation:-
$$(n-5)(n-10)-3(n-2) \le 0$$

$$\Rightarrow n^2 - 18n + 56 \le 0$$

$$\Rightarrow (n-4) (n-14) \leq 0$$

As n is an integer, n can be 4, 5, 614, i.e. it can have 11 values.

QNo:- 93 ,Correct Answer:- 24

Explanation:
$$x^2 + 11x + n = x \Rightarrow x^2 + 10x + n = 0$$

$$x^2 + 10x + 25 = 0$$
 has real and equal roots

$$x^2 + 10x + n = 0$$
 where $n > 25$ has complex roots.

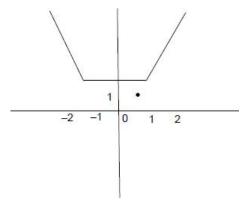
The maximum value of n for which the equation has two distinct real roots in 24.

QNo:- 94 ,Correct Answer:- 2

Explanation:- a + b + c + d = 30, a, b, c, d are integers.

$$(a-b)^2 + (a-c)^2 + (a-d)^2$$
 would have its maximum value when each bracket has the least possible value.
Let $(a, b, c, d) = (8, 8, 7, 7)$

The given expression would be 2. It cannot have a smaller value.


QNo:- 95 ,Correct Answer:- 160

Explanation:- There are 5 pairs of diametrically opposite points and the centre O.

If O is not selected, the number of triangles =
$${}^{10}C_3$$
 = 120.

If O is selected, the other two points can be selected in 10(8)/2, i.e., 40 ways. The number of triangles is 160.

QNo:- 96 ,Correct Answer:- A

Explanation:-

The graph of
$$y = |x - 1| + |x + 1|$$
 is shown above.

The shortest distance of $(\frac{1}{2},1)$ from the graph is 1.

QNo:- 97 ,Correct Answer:- A

Explanation:- Let the first term be a and the common difference be d.

$$(a + 6d)^2 = (a + 2d) (a + 16d)$$

 $\Rightarrow a^2 + 12ad + 36d^2 = a^2 + 18ad + 32d^2$
 $\Rightarrow 4d^2 = 6ad$
 $\Rightarrow \frac{a}{d} = \frac{2}{3}$

QNo:- 98 ,Correct Answer:- A

Explanation:- After giving one eraser to each of the 4 kids, there are 3 left. They can split 2, 1 or 1, 1, 1. (No kid can get 4)

There are ${}^4P_2 + {}^4C_3$, i.e., 16 ways of distributing the erasers.

QNo:- 99 ,Correct Answer:- A

Explanation:-
$$f(x) = \frac{5x + 2}{3x - 5}, g(x) = x^2 - 2x - 1$$

$$f(3) = \frac{5(3) + 2}{3(3) - 5} = \frac{17}{4}$$

$$f(17) = \frac{5\left(\frac{17}{4}\right) + 2}{3\left(\frac{17}{4}\right) - 5} = \frac{85 + 8}{51 - 20} = \frac{93}{31} = 3$$

$$g(3) = 3^2 - 2(3) - 1 = 2.$$

QNo:- 100 ,Correct Answer:- B

The minimum integral value of m is 9

Explanation:-
$$a_1 = 3$$
, $a_2 = 7$, $a_n = 4n - 1$, $a_{3n} = 4(3n) - 1$
 $a_1 + a_2 + + a_{3n} = \frac{3n(12n + 2)}{2} = 1830$
 $\Rightarrow n(6n + 1) = 610$
 $\Rightarrow 6n^2 + n - 610 = 0$
 $\Rightarrow (6n + 61) (n - 10) = 0$
 $\Rightarrow n = 10 (\because n \text{ is an integer})$
 $\therefore a_1, a_2 + + a_n = 3 + 7 + ... + [4(10) - 1]$
 $= \frac{4(10)(11)}{2} - 10 = 210$
 $= 210 \text{ m} > 1830 = n > \frac{1830}{210} = 8.7$