

திருவள்ளுவர் பல்கலைக்கழகம், வேலார் THIRUVALLUVAR UNIVERSITY, VELLORE

Ph.D., - COMMON ENTRANCE TEST (CET9) - JUNE SESSION 2022

Subject : MATHEMATICS Exam Date

: 26.06.2022

Time : 11.00 A.M. TO 12.30. P.M Maximum Marks : 50

NAME		REGISTER NO	
		HALL TICKET NO.	
MOBILE NO		EMAIL ID	
CANDIDATE SIGNATURE		HALL INVEGILATOR SIGNATURE WITH DATE	

SECTION – A $(50 \times 1 = 50 \text{ Marks})$

All Ouestions carry equal marks

- 1. Let G be non-abelien group of order p^3 where p is a prime. If center of the group Z(G) is not identity, then
 - A) Order of Z(G) = p
 - B) Order of $Z(G) = p^2$ C) $\frac{G}{Z(G)}$ is cyclic

 - D) None of the above
- 2. Let G be a group of order pqr, where p, q, r are primes and p < q < r. Which of the following statements are true?

A) Sylowr – subgroup of G is normal

- B) G has no normal subgroup of order qr
- C) Sylowp subgroup of Gneed not normal
- D) All of the above
- 3. Let *R* be a ring with unity such that each element of *R* is an idempotent. Then the characteristic of R is
 - A) 0
 - B) 2
 - C) An odd prime
 - D) 1
- 4. Let A and B be square matrices of order n. Then the minimum value of rank of (AB) is given by A) rank(A) + rank(B)
 - B) rank(A) + rank(B) + n
 - C) $rank(A) \times rank(B)$
 - D) rank(A) + rank(B) n
- 5. Let $A(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \theta \in (0, 2\pi)$ Which of the following statements is ture ? A) $A(\theta)$ has eigenvectors in \mathbb{R}^2 for every $\theta \in (0, 2\pi)$

 - B) $A(\theta)$ does not have eigenvectors in in \mathbb{R}^2 for any $\theta \in (0, 2\pi)$
 - C) $A(\theta)$ has eigenvectors in \mathbb{R}^2 for exactly one value of $\theta \in (0, 2\pi)$
 - D) $A(\theta)$ has eigenvectors in \mathbb{R}^2 for exactly two value of $\theta \in (0, 2\pi)$

- 6. The sequence $n^{\frac{1}{n}}$ is
 - A) monotonically decreasing
 - B) monotonically increasing
 - C) convergent and converges to zero
 - D) neigher monotonically increasesing or monotonically decreasing
- 7. The value of the series $\sum_{n=1}^{\infty} \frac{n}{2^n}$ is given by
 - A) 2
 - B) 4
 - C) 6
 - D) 8
- 8. The set $A = \{x \in \mathbb{R} : xsin(x) \le 1, xcos(x) \le 1\}$ subset of \mathbb{R} is
 - A) Bounded closed set
 - B) Unbounded closed set
 - C) Bounded open set
 - D) Unbounded open set

9. Let
$$\alpha = \lim_{(x,y)\to(0,0)} \frac{\sin (x^2 + y^2)}{x^2 + y^2}$$
 and $\beta = \lim_{(x,y)\to(0,0)} \frac{(x^2 - y^2)}{x^2 + y^2}$. Then,

- A) α exists but β does not
- B) α does not exists but β exists
- C) α and β does not exist
- D) Both α , β does exist

10. The value of
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$
 is

- A) $\frac{1}{e}$
- B) 1
- C) e
- D) 0
- 11. The branch point of the Riemann Surface $w = z^n$ is
 - A) $w = \pm \pi$
 - B) w = 0
 - C) $w = \pm 2\pi$
 - D) $w = \pm 1$
- 12. If a mapping of Ω by w = f(z) is topological then
 - A) $z = f^{-1}(w)$ is also analytic
 - B) $\overline{f}(z)$ is also analytic
 - C) $f'(z_0) = 0$
 - D) f(z) = 0
- 13. The level curves $u = u_0$ and $v = v_0$ of $w = z^2$ are A) Paraboloas
 - B) Concentric circles
 - C) Circles of Apollonius
 - D) Equilateral hyperbolas

- 14. In the linear transformation of the form $w = k \cdot \frac{z-a}{z-b}$ the point b in the z-plane corresponds to
 - A) w = 0B) w = z + cC) w = bD) $w = \infty$
- 15. If a curve γ lies inside a circle and "a" does not pass through γ then with usual notation, $n(\gamma, a) =$
 - A) $n(-\gamma, a)$ **B**) 0 C) $-n(\gamma, a)$ D) 1
- 16. The two linearly independent solutions of y'' + y = 0 are
 - A) e^{x} , e^{x} B) e^{2x} , e^{-x} C) e^{ix} , e^{-ix} D) e^{2ix} , e^{-2ix}

17. $\frac{dy}{dx} + Py = Q$ is a linear differential equation of first order if A) P, Q are functions of x only

- B) P, Q are functions of y only
- C) P, Q are functions of x and y
- D) None of these

18. Let φ satisfy $\varphi(x) = f(x) + \int_0^x \sin(x - t) \varphi(t) dt$. Then φ is given by A) $\varphi(x) = f(x) + \int_0^x (x-t)f(t)dt$

- B) $\varphi(x) = f(x) \int_0^x (x t) f(t) dt$ C) $\varphi(x) = f(x) \int_0^x \cos(x t) f(t) dt$
- D) $\varphi(x) = f(x) \int_0^x \sin(x-t)f(t)dt$

19. The partial differential equation $x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial y^2} = 0$ is

- A) Hyperbolic for x > 0, y > 0.
- B) Elliptic for x > 0, y < 0.
- C) Hyperbolic for x > 0, y < 0
- D) Elliptic for x < 0, y < 0.

20. Let y_1 and y_2 be two solutions of the problem $y''(t) + ay'(t) + by(t) = 0, t \in R, y(0) = 0$ where a and b are real constants. Let W be the Wronskian of y_1 and y_2 . Then

- A) W is a non constant positive function
- B) W(t) = a for all $t \in R$, for some c > 0
- C) W(t) = 0 for all $t \in R$.
- D) There exists $t_1, t_2 \in R$ such that $W(t_1) < 0 < W(t_2)$.
- 21. The assignment Problem is a
 - A) Non linear programming problem
 - B) Dyanamic programming problem
 - C) Integer linear programming problem
 - D) Integer non linear programming problem

- 22. Given that (a, m) = d and d|b, then the linear congruence $ax \equiv b \pmod{m}$ has exactly
 - A) One solution
 - **B)** Solutions
 - C) *m* solutions
 - D) d solutions modulo m
- 23. Number of edges in a complete graph, K_n with n vertices
 - A) $\frac{n(n+1)}{2}$ B) $\frac{n(n-1)}{2}$

 - C) *n*
 - D) *n* − 1
- 24. The sum of the degrees of every vertex in a graph G is
 - A) Always odd
 - B) Always a power of 2
 - C) Always even
 - D) Can be any positive integer
- 25. Let G be a non-trivial connected graph. Then G contains an open Eulerian trail if and only if A) G has exactly two odd degree vertices
 - B) All its vertices has even degree
 - C) G has exactly one odd vertex
 - D) None of the above
- 26. Let S be a nonempty proper subset of vertices of a Hamiltonian graph G and $\omega(H)$ denotes the number of components in any graph H, then
 - A) $\omega(G S) \leq |S|$
 - B) $\omega(G S) \ge |S|$
 - C) $\omega(G S) = |S|$
 - D) None of the above
- 27. Identify a necessary condition for a continuously differentiable function $f(x_1, x_2 \dots x_n)$ of n variables $x_1, x_2 \dots x_n$ to have a relative maximum or minimum at an interior point of a region.

A)
$$df = \frac{\partial F}{\partial x_1} dx_1 + \frac{\partial F}{\partial x_2} dx_2 + \cdots \frac{\partial F}{\partial x_n} dx_n$$

B) $\frac{\partial F}{\partial x_1} = \frac{\partial F}{\partial x_2} = \cdots = \frac{\partial F}{\partial x_n} = 0$
C) $\frac{dF}{dx_1} = \frac{dF}{dx_2} = \cdots = \frac{dF}{dx_n} = 0$
D) $dF = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial y'} dy'$

28. Under usual notation, when $y(x_1)$ is not given, the natural boundary condition for y(x) is

A)
$$\left[\frac{\partial f}{\partial y'}\eta[x]\right]_{x=x_1} - \left[\frac{\partial f}{\partial y'}\eta[x]\right]_{x=x_2} = 0$$

B) $\left[\frac{\partial f}{\partial y'}\right]_{x=x_1} = 0$
C) $\left[\frac{\partial f}{\partial y'}\right]_{x=x_2} = 0$
D) $\left[\frac{\partial f}{\partial y'}\eta[x]\right]_{x=x_1} + \left[\frac{\partial f}{\partial y'}\eta[x]\right]_{x=x_2} = 0$

29. Given than y(x) has a discontinuity at c, the natural transition condition is represented by

- A) $\lim_{x \to c^+} \frac{\partial f}{\partial y'} = \lim_{x \to c^-} \frac{\partial f}{\partial y'}$ B) $\lim_{x \to c^+} \frac{\partial f}{\partial y} = \lim_{x \to c^-} \frac{\partial f}{\partial y}$ C) $y(c^+) + y(c^-) = y(c)$ D) $v(c^+) - v(c^-) = v(c)$
- 30. A ball of mass 8gms moving with velocity 10cm/sec impinges directly on another of mass 24gms, moving at 2 cm/sec in the same direction. If e = 0.5, then their respective velocities after impact is
 - A) 5cm/sec, 1cm/ sec
 - B) 5 cm/sec, 0cm/sec
 - C) 1 cm/sec, 5cm/sec
 - D) 0 cm/sec, 5cm/ sec
- 31. If three equal forces each equal to p act along the sides of a triangle ABC taken in order then the algebraic sum of the resolved parts of the forces along BC is
 - A) p(cosC cos B)
 - B) $p(1 \cos C \cos B)$
 - C) $p(\cos C + \cos B)$
 - D) $p(1 + \cos C + \cos B)$
- 32. Let (X, d) be a metric space where X is an infinite set and d is the discrete metric.
 - A) Heine Borel theorem holds for (X, d)
 - B) Heine Borel theorem does not holds for (X, d)
 - C) X is not bounded
 - D) X is compact

33. For
$$x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \in \mathbb{R}^3$$

 $d_1(x, y) = \max_{1 \le j \le 3} |x_j - y_j|$
 $d_2(x, y) = \sqrt{\sum_{j=1}^3 (x_j - y_j)^2}$

Consider the metric spaces (\mathbb{R}^3, d_1) and (\mathbb{R}^3, d_2) , then A) (\mathbb{R}^3, d_1) is complete, but (\mathbb{R}^3, d_2) is not complete B) (\mathbb{R}^3, d_2) is complete, but (\mathbb{R}^3, d_1) is not complete

- C) Both (\mathbb{R}^3, d_1) and (\mathbb{R}^3, d_2) are complete
- D) Neither (\mathbb{R}^3, d_1) nor (\mathbb{R}^3, d_2) is complete
- 34. Let f be a function defined on $[0, \infty)$ by f(x) = [x], the greatest Integer less than or equal to x. Then
 - A) *f* is continuous at each point of \mathbb{N} .
 - B) f is continuous on $[0, \infty)$.
 - C) f is continuous on [0, 1]
 - D) f is discontinuous at x = 1, 2, 3, ...
- 35. Which of the following statement is correct?
 - A) Every compact Hausdorff space is normal.
 - B) Every compact Tychonoff space is normal.
 - C) Every Hausdorff space is Regular.
 - D) None of the above.

- 36. Co-countable topology is finer than
 - A) usual topology
 - B) product topology
 - C) co-finite topology
 - D) none of the above
- 37. If X is Hausdorff then
 - A) the complement of any finite set is closed.
 - B) the complement of any finite set is open.
 - C) the complement of any finite set is compact.
 - D) All of the above.
- 38. For Bernoulli's equation to be applied, which of the following assumptions must be met?
 - A) The flow must be steady.
 - B) The flow must be incompressible
 - C) Friction by viscous forces must be minima
 - D) All of the above
- 39. In fluid flow, the line of constant piezometric head passes through two points which have the same ______
 - A) velocity.
 - B) pressure.
 - C) elevation.
 - D) All of the above.
- 40. Rotameter is a device used to measure
 - A) Absolute pressure
 - B) Velocity of fluid
 - C) Rotation
 - D) Flow
- 41. An ideal flow of a liquid obeys
 - A) Continuity equation
 - B) Newton's law of viscosity
 - C) Newton's second law of motion
 - D) dynamic viscosity law
- 42. Trapezoidal rule gives exact value of the integral if the integrand is a
 - A) Quadratic function
 - B) Continuous function
 - C) linear function.
 - D) None of the above

43. Order of convergence of Newton Raphson method is

- A) 1
- B) 2
- C) 3
- D) 4
- 44. If f(0) = 3, f(1) = 5, f(3) = 21, then the unique polynomial of degree 2 or less using newton divided difference interpolation will be
 - A) $2x^2$ B) $2x^2 + 1$ C) $2x^2 + 3$
 - D) x^{2+2}

45. Whichofthefollowingtestis usedtotesttheequalityoftreatmentmeansinANOVA?

- A) x^2 -test
- B) t-test
- C) F-test
- D) standard normal

46. What is the expected number of heads appearing when a fair coin is tossed three times?

- A) 2.2
- B) 2
- C) 1
- D) 1.5

47. Which of the following principles of experimental design is/are used in CRD?

- A) randomizationonly
- B) randomization and replication
- C) replicationonly
- D) localcontrolandrandomization

48. In estimating population mean based on a stratified sample with maximum precision for afixed cost, take alarge sample from astratumif

- A) the stratum is larger
- B) samplingischeaperinthestratum
- C) thestratumismorevariable internally
- D) conditionsineither(A),(B)and(C)orallsimultaneouslyhold

49. Let X_i 's be independent random variables such that X_i 's are symmetric about 0 and $Var(X_i) =$

2i-1, for $i \ge 1$. Then, $\lim_{n\to\infty} P(X_1 + X_2 + \dots + X_n > n \log n)$

- A) Equals 0
- B) Equals $\frac{1}{2}$
- C) Equals 1
- D) Equals 3

50. Three unbiased coins are tossed. What is the probability of getting at most two heads

A) $\frac{1}{3}$ B) $\frac{1}{9}$ C) $\frac{7}{8}$ D) $\mathbb{P}(E) = \frac{5}{8}$