NCERT Solutions for Class 10 Maths Unit 6

Triangles Class 10

Unit 6 Triangles Exercise 6.1, 6.2, 6.3, 6.4, 6.5, 6.6 Solutions

Q1 :

Exercise 6.1 : Solutions of Questions on Page Number : 122 Fill in the blanks using correct word given in the brackets:-

- (i) All circles are _____. (congruent, similar)
- (ii) All squares are _____. (similar, congruent)
- (iii) All ______ triangles are similar. (isosceles, equilateral)
- (iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are ______ and (b) their corresponding sides are ______. (equal, proportional)

Answer :

- (i) Similar
- (ii) Similar
- (iii) Equilateral
- (iv) (a) Equal (b) Proportional

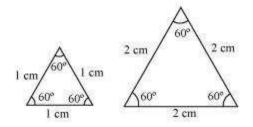
Q2 :

Give two different examples of pair of

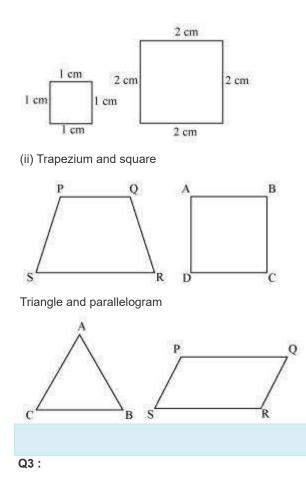
- (i) Similar figures
- (ii)Non-similar figures

Answer :

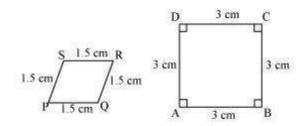
(i) Two equilateral triangles with sides 1 cm and 2 cm



Two squares with sides 1 cm and 2 cm



State whether the following quadrilaterals are similar or not:



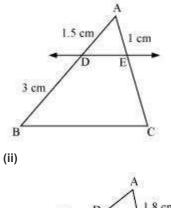
Answer :

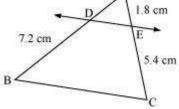
Quadrilateral PQRS and ABCD are not similar as their corresponding sides are proportional, i.e. 1:2, but their corresponding angles are not equal.

Exercise 6.2 : Solutions of Questions on Page Number : 128 Q1 :

In figure.6.17. (i) and (ii), DE || BC. Find EC in (i) and AD in (ii).

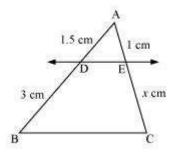
(i)





Answer :

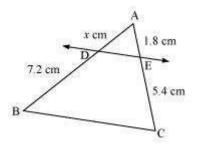
(i)



It is given that DE || BC.

By using basic proportionality theorem, we obtain

 $\frac{AD}{DB} = \frac{AE}{EC}$ $\frac{1.5}{3} = \frac{1}{x}$ $x = \frac{3 \times 1}{1.5}$ x = 2 $\therefore EC = 2 \text{ cm}$ (ii)



Let AD = x cm

It is given that DE || BC.

By using basic proportionality theorem, we obtain

AD AE
$\overline{DB} = \overline{EC}$
$x_{-1.8}$
7.2 5.4
$x = \frac{1.8 \times 7.2}{5.4}$
<i>x</i> = 2.4
: AD = 2.4 cm

Q2 :

E and F are points on the sides PQ and PR respectively of a Δ PQR. For each of the following cases, state whether EF || QR.

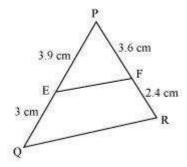
(i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm

(ii) PE = 4 cm, QE = 4.5 cm, PF = 8 cm and RF = 9 cm

(iii)PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.63 cm

Answer :

(i)

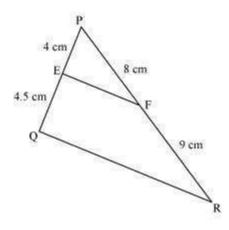


Given that, PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm, FR = 2.4 cm

 $\frac{PE}{EQ} = \frac{3.9}{3} = 1.3$ $\frac{PF}{FR} = \frac{3.6}{2.4} = 1.5$ Hence, $\frac{PE}{EQ} \neq \frac{PF}{FR}$

Therefore, EF is not parallel to QR.

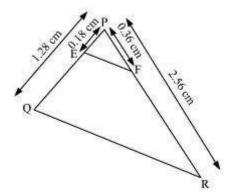
(ii)



PE = 4 cm, QE = 4.5 cm, PF = 8 cm, RF = 9 cm

 $\frac{PE}{EQ} = \frac{4}{4.5} = \frac{8}{9}$ $\frac{PF}{FR} = \frac{8}{9}$ Hence, $\frac{PE}{EQ} = \frac{PF}{FR}$ Therefore, EF is parallel to QR.

(iii)



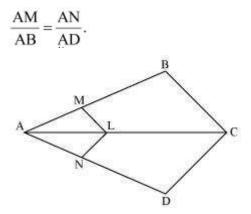
PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm, PF = 0.36 cm

 $\frac{PE}{PQ} = \frac{0.18}{1.28} = \frac{18}{128} = \frac{9}{64}$ $\frac{PF}{PR} = \frac{0.36}{2.56} = \frac{9}{64}$ $Hence, \ \frac{PE}{PQ} = \frac{PF}{PR}$

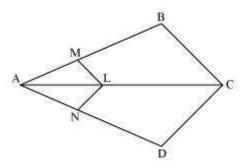
Therefore, EF is parallel to QR.

Q3 :

In the following figure, if LM || CB and LN || CD, prove that



Answer :



In the given figure, LM || CB

By using basic proportionality theorem, we obtain

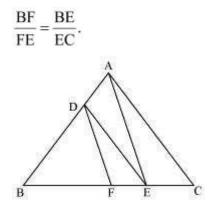
$$\frac{AM}{AB} = \frac{AL}{AC} \qquad (i)$$

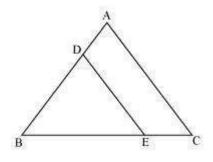
Similarly, LN || CD
$$\therefore \frac{AN}{AD} = \frac{AL}{AC} \qquad (ii)$$

From (i) and (ii), we obtain
$$\frac{AM}{AB} = \frac{AN}{AD}$$

Q4 :

In the following figure, DE || AC and DF || AE. Prove that

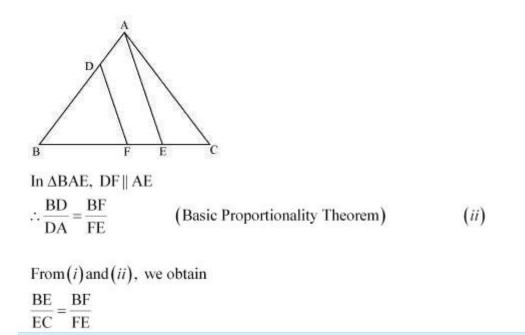




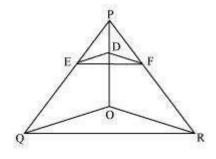
In ∆ABC, DE || AC

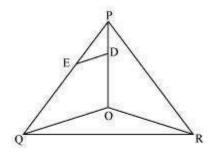
...

$$\frac{BD}{DA} = \frac{BE}{EC}$$
 (Basic Proportionality Theorem) (*i*)

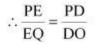


In the following figure, DE || OQ and DF || OR, show that EF || QR.

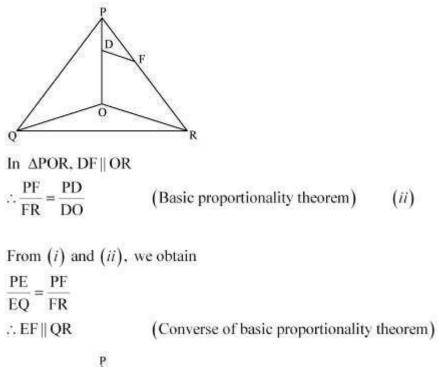


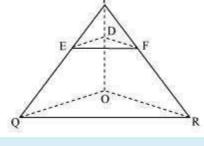


In ∆ POQ, DE || OQ

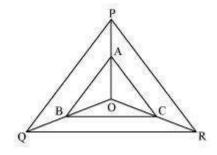


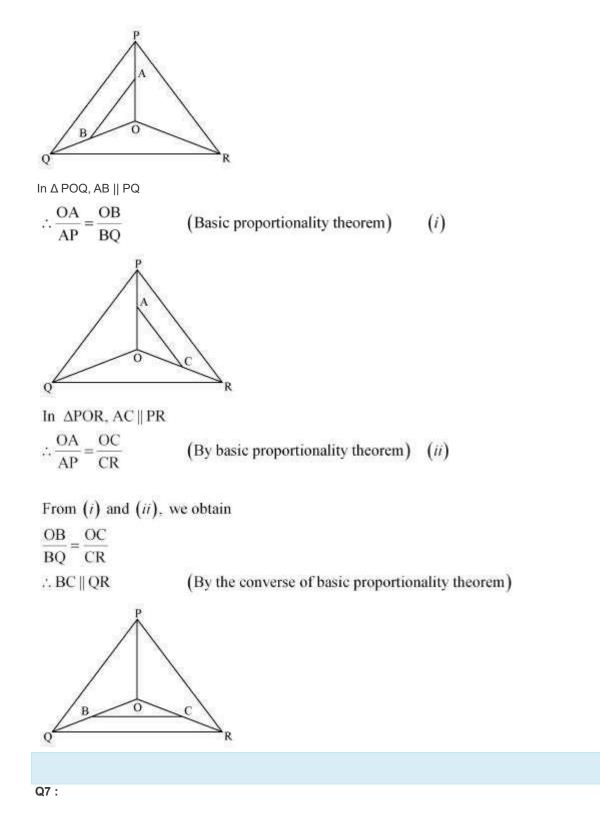
(Basic proportionality theorem) (i)





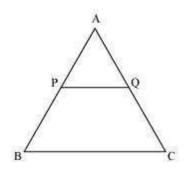
In the following figure, A, B and C are points on OP, OQ and OR respectively such that AB || PQ and AC || PR. Show that BC || QR.





Using Basic proportionality theorem, prove that a line drawn through the mid-points of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX).

Answer :



Consider the given figure in which PQ is a line segment drawn through the mid-point P of line AB, such that $PQ \parallel BC$

By using basic proportionality theorem, we obtain

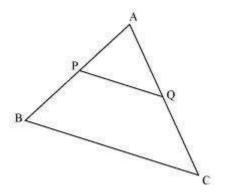
 $\frac{AQ}{QC} = \frac{AP}{PB}$ $\frac{AQ}{QC} = \frac{1}{1} \qquad (P \text{ is the mid-point of AB. } \therefore AP = PB)$ $\Rightarrow AQ = QC$

Or, Q is the mid-point of AC.

Q8 :

Using Converse of basic proportionality theorem, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX).

Answer:



Consider the given figure in which PQ is a line segment joining the mid-points P and Q of line AB and AC respectively.

i.e., AP = PB and AQ = QC It

can be observed that

$$\frac{AP}{PB} = \frac{1}{1}$$

and
$$\frac{AQ}{QC} = \frac{1}{1}$$
$$\therefore \frac{AP}{PB} = \frac{AQ}{OC}$$

Hence, by using basic proportionality theorem, we obtain

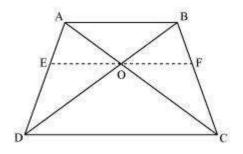
PQ||BC

Q9 :

ABCD is a trapezium in which AB || DC and its diagonals intersect each other at the point O. Show

$$\frac{AO}{BO} = \frac{CO}{DO}.$$

Answer :



Draw a line EF through point O, such that $\frac{EF \| \, CD}{}$

 ${\sf In}\, {\sf \Delta}{\sf ADC}, \, {\sf EO}\, \|\, {\sf CD}\,$

By using basic proportionality theorem, we obtain

$$\frac{AE}{ED} = \frac{AO}{OC}$$
(1)

In $\triangle ABD$, $OE \parallel AB$

So, by using basic proportionality theorem, we obtain

$$\frac{ED}{AE} = \frac{OD}{BO}$$
$$\Rightarrow \frac{AE}{ED} = \frac{BO}{OD} \qquad (2)$$

From equations (1) and (2), we obtain

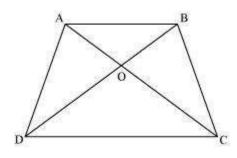
$$\frac{AO}{OC} = \frac{BO}{OD}$$
$$\Rightarrow \frac{AO}{BO} = \frac{OC}{OD}$$

Q10:

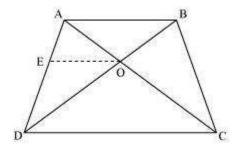
The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{AO}{BO} = \frac{CO}{DO}$. Show that ABCD is a trapezium.

Answer :

Let us consider the following figure for the given question.



Draw a line OE || AB



In ∆ABD, OE || AB

By using basic proportionality theorem, we obtain

 $\frac{AE}{ED} = \frac{BO}{OD}$ (1)

However, it is given that

 $\frac{AO}{OC} = \frac{OB}{OD}$ (2) From equations (1) and (2), we obtain $\frac{AE}{ED} = \frac{AO}{OC}$

 \Rightarrow EO || DC [By the converse of basic proportionality theorem]

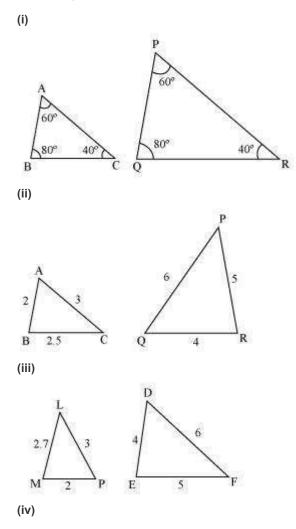
 \Rightarrow AB || OE || DC

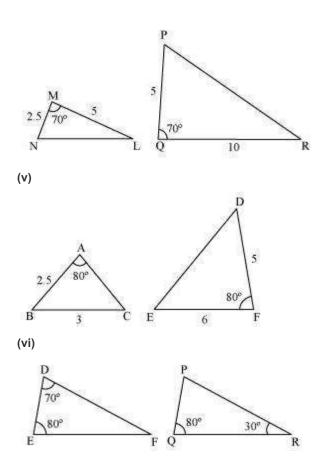
 \Rightarrow AB || CD

: ABCD is a trapezium.

Exercise 6.3 : Solutions of Questions on Page Number : 138 Q1 :

State which pairs of triangles in the following figure are similar? Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:





Answer :

(i) $\angle A = \angle P = 60^{\circ}$ $\angle B = \angle Q = 80^{\circ}$

$$\angle C = \angle R = 40^{\circ}$$

Therefore, $\triangle ABC \ \tilde{A} \notin \ddot{E} \dagger \hat{A} \frac{1}{4} \ \Delta PQR$ [By AAA similarity criterion]

$$\frac{AB}{OR} = \frac{BC}{RP} = \frac{CA}{PO}$$

(ii)

$$\therefore \Delta ABC \sim \Delta QRP$$
 [By SSS similarity criterion]

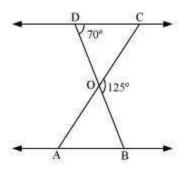
(iii)The given triangles are not similar as the corresponding sides are not proportional.

(iv) In âˆâ€ MNL and âˆâ€ QPR, we observe that,

MNQP = MLQR = 12

Q2 :

In the following figure, $\Delta ODC \propto \frac{1}{4} \Delta OBA$, $\angle BOC = 125^{\circ}$ and $\angle CDO = 70^{\circ}$. Find $\angle DOC$, $\angle DCO$ and $\angle OAB$



Answer :

DOB is a straight line. $\therefore \angle DOC + \angle COB = 180^{\circ}$ $\Rightarrow \angle DOC = 180^{\circ} - 125^{\circ}$ $= 55^{\circ}$ In $\triangle DOC$, $\angle DCO + \angle CDO + \angle DOC = 180^{\circ}$ (Sum of the measures of the angles of a triangle is 180^{\circ}.) $\Rightarrow \angle DCO + 70^{\circ} + 55^{\circ} = 180^{\circ}$ $\Rightarrow \angle DCO = 55^{\circ}$

It is given that $\triangle ODC \angle \hat{A}^{1/4} \triangle OBA$.

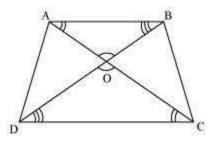
 $\therefore \angle OAB = \angle OCD$ [Corresponding angles are equal in similar triangles.]

 $\Rightarrow \angle OAB = 55^{\circ}$

Q3 :

Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at the point O. Using a

similarity criterion for two triangles, show that $\frac{AO}{OC} = \frac{OB}{OD}$



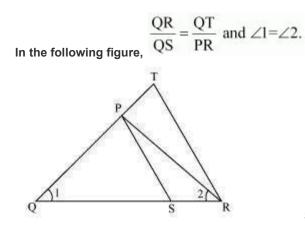
In ΔDOC and ΔBOA ,

- ∠CDO = ∠ABO [Alternate interior angles as AB || CD]
- ∠DCO = ∠BAO [Alternate interior angles as AB || CD]
- ∠DOC = ∠BOA [Vertically opposite angles]

 $\therefore \Delta DOC ~ \tilde{A} \notin \ddot{E} \dagger \hat{A} \frac{1}{4} \Delta BOA [AAA similarity criterion]$

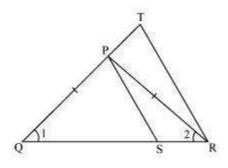
$$\therefore \frac{DO}{BO} = \frac{OC}{OA}$$
[Corresponding sides are proportional]
$$\Rightarrow \frac{OA}{OC} = \frac{OB}{OD}$$

Q4 :



Show that $\Delta PQS \sim \Delta TQR$

Answer :



In ∆PQR, ∠PQR = ∠PRQ

∴ PQ = PR (i)

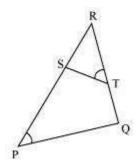
Given,

 $\frac{QR}{QS} = \frac{QT}{PR}$ Using(*i*), we obtain $\frac{QR}{QS} = \frac{QT}{QP} \qquad (ii)$ In ΔPQS and ΔTQR , $\frac{QR}{QS} = \frac{QT}{QP} \qquad [Using(ii)]$ $\angle Q = \angle Q$ $\therefore \Delta PQS \sim \Delta TQR \qquad [SAS similarity criterion]$

Q5 :

S and T are point on sides PR and QR of \triangle PQR such that \angle P = \angle RTS. Show that \triangle RPQ $\angle \hat{A}^{1/4} \triangle$ RTS.

Answer :



In ΔRPQ and ΔRST ,

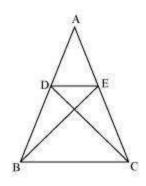
∠ RTS = ∠ QPS (Given)

 $\angle R = \angle R$ (Common angle)

 $\therefore \Delta RPQ \propto \frac{1}{4} \Delta RTS$ (By AA similarity criterion)

Q6 :

In the following figure, if $\triangle ABE \cong \triangle ACD$, show that $\triangle ADE \propto \frac{1}{4} \triangle ABC$.

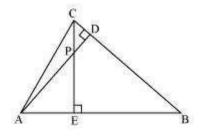


Answer :

It is given that $\triangle ABE \cong \triangle ACD$. $\therefore AB = AC [By CPCT] (1)$ And, AD = AE [By CPCT] (2) In $\triangle ADE$ and $\triangle ABC$, $\frac{AD}{AB} = \frac{AE}{AC}$ [Dividing equation (2) by (1)] $\angle A = \angle A$ [Common angle] $\therefore \triangle ADE \tilde{A} \notin \ddot{E} \dagger \hat{A} / 4 \triangle ABC$ [By SAS similarity criterion]

Q7 :

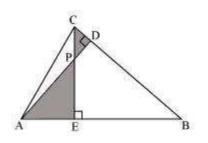
In the following figure, altitudes AD and CE of \triangle ABC intersect each other at the point P. Show that:



- (i) $\Delta AEP \propto \frac{1}{4} \Delta CDP$
- (ii) $\triangle ABD \propto \frac{1}{4} \triangle CBE$
- (iii) $\Delta AEP \propto \frac{1}{4} \Delta ADB$
- (v) $\Delta PDC \propto \frac{1}{4} \Delta BEC$

Answer :

(i)



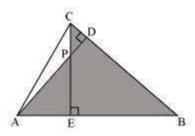
In $\triangle AEP$ and $\triangle CDP$,

 $\angle AEP = \angle CDP$ (Each 90°)

∠ APE = ∠ CPD (Vertically opposite angles)

Hence, by using AA similarity criterion,

 $\Delta AEP \propto \frac{1}{4} \Delta CDP$

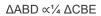


In $\triangle ABD$ and $\triangle CBE$,

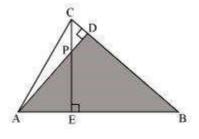
 $\angle ADB = \angle CEB (Each 90^{\circ})$

 $\angle ABD = \angle CBE$ (Common)

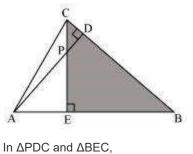
Hence, by using AA similarity criterion,



(iii)



In $\triangle AEP$ and $\triangle ADB$, $\angle AEP = \angle ADB$ (Each 90°) \angle PAE = $\angle DAB$ (Common) Hence, by using AA similarity criterion, $\triangle AEP \propto \frac{1}{4} \triangle ADB$ (iv)



 \angle PDC = \angle BEC (Each 90°)

 \angle PCD = \angle BCE (Common angle)

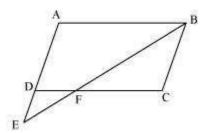
Hence, by using AA similarity criterion,

 $\Delta PDC \propto \frac{1}{4} \Delta BEC$

Q8 :

E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that $\triangle ABE \ \angle \hat{A}^{1/4} \Delta CFB$

Answer :



In $\triangle ABE$ and $\triangle CFB$,

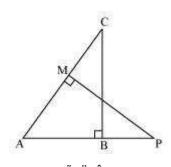
 $\angle A = \angle C$ (Opposite angles of a parallelogram)

 \angle AEB = \angle CBF (Alternate interior angles as AE || BC)

 $\therefore \Delta ABE \propto \frac{1}{4} \Delta CFB$ (By AA similarity criterion)

Q9 :

In the following figure, ABC and AMP are two right triangles, right angled at B and M respectively, prove that:



(i) $\triangle ABC \tilde{A} \notin \tilde{E} \dagger \hat{A}^{\frac{1}{4}} \Delta AMP$ $\frac{CA}{CA} = \frac{BC}{CA}$

Answer :

In $\triangle ABC$ and $\triangle AMP$,

 $\angle ABC = \angle AMP$ (Each 90°)

 $\angle A = \angle A$ (Common)

.: ΔABC âˆÂ¼ ΔAMP (By AA similarity criterion)

$$\Rightarrow \frac{CA}{PA} = \frac{BC}{MP}$$

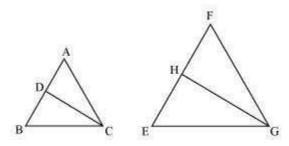
(Corresponding sides of similar triangles are proportional)

Q10 :

CD and GH are respectively the bisectors of \angle ACB and \angle EGF such that D and H lie on sides AB and FE of \triangle ABC and \triangle EFG respectively. If \triangle ABC \tilde{A} ¢Ë† \hat{A} ¹/₄ \triangle FEG, Show that:

- (i) $\frac{CD}{GH} = \frac{AC}{FG}$
- (ii) ΔDCB âˆÂ¼ ΔHGE
- (iii) ΔDCA âˆÂ¼ ΔHGF

Answer :



It is given that $\triangle ABC \tilde{A} \phi \ddot{E} \dagger \hat{A} \frac{1}{4} \Delta FEG.$

 $\therefore \angle A = \angle F, \angle B = \angle E, \text{ and } \angle ACB = \angle FGE$

∠ACB = ∠FGE

```
\therefore \angle ACD = \angle FGH (Angle bisector)
```

And, $\angle DCB = \angle HGE$ (Angle bisector)

In \triangle ACD and \triangle FGH,

 $\angle A = \angle F$ (Proved above)

 $\angle ACD = \angle FGH$ (Proved above)

:: $\Delta ACD \tilde{A} \notin \ddot{E} + \hat{A} / 4 \Delta FGH$ (By AA similarity criterion)

$$\Rightarrow \frac{\text{CD}}{\text{GH}} = \frac{\text{AC}}{\text{FG}}$$

In ΔDCB and $\Delta HGE,$

 \angle DCB = \angle HGE (Proved above)

 $\angle B = \angle E$ (Proved above)

 $\therefore \Delta DCB \tilde{A} \notin \ddot{E} \dagger \dot{A} \frac{1}{4} \Delta HGE$ (By AA similarity criterion)

In ΔDCA and ΔHGF ,

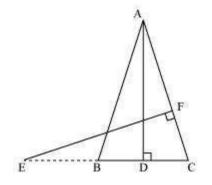
 $\angle ACD = \angle FGH$ (Proved above)

 $\angle A = \angle F$ (Proved above)

 $\div\,\Delta DCA~\tilde{A} \not e \ddot{E} \dagger \hat{A} \rlap {1}_{4} \Delta HGF$ (By AA similarity criterion)

Q11 :

In the following figure, E is a point on side CB produced of an isosceles triangle ABC with AB = AC. If AD \perp BC and EF \perp AC, prove that \triangle ABD \propto ¹/₄ \triangle ECF



Answer :

It is given that ABC is an isosceles triangle.

 $\therefore AB = AC$

 $\mathrel{\Rightarrow} \angle \mathsf{ABD} \mathrel{=} \angle \mathsf{ECF}$

In $\triangle ABD$ and $\triangle ECF$,

 $\angle \text{ADB} = \angle \text{EFC} \text{ (Each 90°)}$

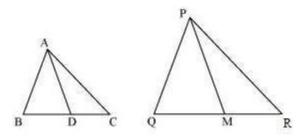
 \angle BAD = \angle CEF (Proved above)

:: $\triangle ABD \angle \hat{A}^{1/4} \triangle ECF$ (By using AA similarity criterion)

Q12 :

Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of Δ PQR (see the given figure). Show that Δ ABC $\angle \hat{A}^{1/4} \Delta$ PQR.

Answer :



Median divides the opposite side.

$$BD = \frac{BC}{2}$$
 and $QM = \frac{QR}{2}$

Given that,

$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AD}{PM}$$
$$\Rightarrow \frac{AB}{PQ} = \frac{\frac{1}{2}BC}{\frac{1}{2}QR} = \frac{AD}{PM}$$
$$\Rightarrow \frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM}$$

In $\triangle ABD$ and $\triangle PQM$,

	BD		
PQ	QM	PM	(Proved above)

:: $\triangle ABD \ \tilde{A} \phi \ddot{E} \dagger \hat{A} \frac{1}{4} \ \Delta PQM$ (By SSS similarity criterion)

 $\Rightarrow \angle ABD = \angle PQM$ (Corresponding angles of similar triangles)

In $\triangle ABC$ and $\triangle PQR$,

 $\angle ABD = \angle PQM$ (Proved above)

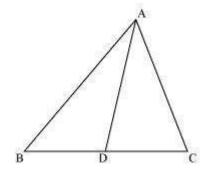
 $\frac{AB}{PO} = \frac{BC}{OR}$

:: $\triangle ABC \tilde{A} \notin \ddot{E} + \hat{A} / 4 \Delta PQR$ (By SAS similarity criterion)

Q13 :

D is a point on the side BC of a triangle ABC such that $\angle ADC = \angle BAC$. Show that $CA^2 = CB.CD$.

Answer:



In $\triangle ADC$ and $\triangle BAC$,

 $\angle ADC = \angle BAC$ (Given)

 $\angle ACD = \angle BCA$ (Common angle)

:: $\Delta ADC \tilde{A} \notin \ddot{E} + \dot{A} / 4 \Delta BAC$ (By AA similarity criterion)

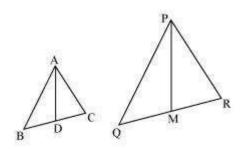
We know that corresponding sides of similar triangles are in proportion.

$$\therefore \frac{CA}{CB} = \frac{CD}{CA}$$
$$\Rightarrow CA^2 = CB \times CD$$

Q14 :

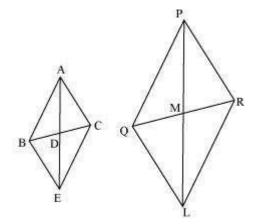
Sides AB and AC and median AD of a triangle ABC are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that $\Delta ABC \sim \Delta PQR$

Answer :



$$\frac{AB}{PQ} = \frac{AC}{PR} = \frac{AD}{PM}$$

Let us extend AD and PM up to point E and L respectively, such that AD = DE and PM = ML. Then, join B to E, C to E, Q to L, and R to L.



We know that medians divide opposite sides.

Therefore, BD = DC and QM = MR

Also, AD = DE (By construction)

And, PM = ML (By construction)

In quadrilateral ABEC, diagonals AE and BC bisect each other at point D.

Therefore, quadrilateral ABEC is a parallelogram.

: AC = BE and AB = EC (Opposite sides of a parallelogram are equal)

Similarly, we can prove that quadrilateral PQLR is a parallelogram and PR = QL, PQ = LR

It was given that

$$\frac{AB}{PQ} = \frac{AC}{PR} = \frac{AD}{PM}$$
$$\Rightarrow \frac{AB}{PQ} = \frac{BE}{QL} = \frac{2AD}{2PM}$$
$$\Rightarrow \frac{AB}{PQ} = \frac{BE}{QL} = \frac{AE}{PL}$$

:: $\triangle ABE \tilde{A} \notin \ddot{E} \dagger \dot{A} / 4 \Delta PQL$ (By SSS similarity criterion)

We know that corresponding angles of similar triangles are equal.

Similarly, it can be proved that $\Delta AEC \; \tilde{A} \not \in \dot{F} h^{1/4} \; \Delta PLR$ and

 $\angle CAE = \angle RPL \dots (2)$

Adding equation (1) and (2), we obtain

 $\angle BAE + \angle CAE = \angle QPL + \angle RPL$

```
\Rightarrow \angle CAB = \angle RPQ \dots (3)
```

In $\triangle ABC$ and $\triangle PQR$,

 $\frac{AB}{PQ} = \frac{AC}{PR}$ (Given)

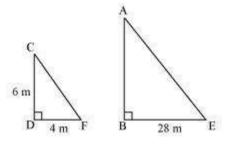
 $\angle CAB = \angle RPQ$ [Using equation (3)]

:: $\triangle ABC \tilde{A} \notin \ddot{E} \uparrow \dot{A} / 4 \Delta PQR$ (By SAS similarity criterion)

Q15 :

A vertical pole of a length 6 m casts a shadow 4m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Answer :



Let AB and CD be a tower and a pole respectively.

Let the shadow of BE and DF be the shadow of AB and CD respectively.

At the same time, the light rays from the sun will fall on the tower and the pole at the same angle.

Therefore, $\angle DCF = \angle BAE$

And, ∠DFC = ∠BEA

∠CDF = ∠ABE (Tower and pole are vertical to the ground)

.: ΔABE âˆÂ¼ ΔCDF (AAA similarity criterion)

 $\Rightarrow \frac{AB}{CD} = \frac{BE}{DF}$ $\Rightarrow \frac{AB}{6 \text{ m}} = \frac{28}{4}$ $\Rightarrow AB = 42 \text{ m}$

Therefore, the height of the tower will be 42 metres.

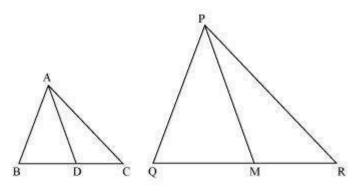
Q16 :

If AD and PM are medians of triangles ABC and PQR, respectively

$$\Delta ABC \sim \Delta PQR$$
 prove that $t \frac{AB}{PQ} = \frac{AD}{PM}$

where

Answer:



It is given that $\triangle ABC \tilde{A} \notin \ddot{E} \uparrow \hat{A} \frac{1}{4} \triangle PQR$

We know that the corresponding sides of similar triangles are in proportion.

$$\frac{AB}{PQ} = \frac{AC}{PR} = \frac{BC}{QR} \dots (1)$$

Also, $\angle A = \angle P$, $\angle B = \angle Q$, $\angle C = \angle R$... (2)

Since AD and PM are medians, they will divide their opposite sides.

$$BD = \frac{BC}{2} \text{ and } QM = \frac{QR}{2} \dots (3)$$

From equations (1) and (3), we obtain

 $\frac{AB}{PQ} = \frac{BD}{QM} \dots (4)$

In $\triangle ABD$ and $\triangle PQM$,

 $\angle B = \angle Q$ [Using equation (2)]

 $\frac{AB}{PQ} = \frac{BD}{QM}$ [Using equation (4)]

.: ΔABD âˆÂ¼ ΔPQM (By SAS similarity criterion)

 $\frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM}$

Exercise 6.4 : Solutions of Questions on Page Number : 143 Q1 :

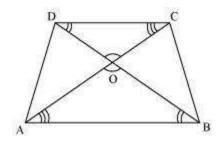
Let $\Delta ABC \sim \Delta DEF$ and their areas be, respectively, 64 cm² and 121 cm². If EF = 15.4 cm, find BC.

Answer :

It is given that $\triangle ABC \sim \triangle DEF$. $\therefore \frac{ar(\triangle ABC)}{ar(\triangle DEF)} = \left(\frac{AB}{DE}\right)^2 = \left(\frac{BC}{EF}\right)^2 = \left(\frac{AC}{DF}\right)^2$ Given that, EF = 15.4 cm, $ar(\triangle ABC) = 64 \text{ cm}^2$, $ar(\triangle DEF) = 121 \text{ cm}^2$ $\therefore \frac{ar(ABC)}{ar(DEF)} = \left(\frac{BC}{EF}\right)^2$ $\Rightarrow \left(\frac{64 \text{ cm}^2}{121 \text{ cm}^2}\right) = \frac{BC^2}{(15.4 \text{ cm})^2}$ $\Rightarrow \frac{BC}{15.4} = \left(\frac{8}{11}\right) \text{ cm}$ $\Rightarrow BC = \left(\frac{8 \times 15.4}{11}\right) \text{ cm} = (8 \times 1.4) \text{ cm} = 11.2 \text{ cm}$

Q2 :

Diagonals of a trapezium ABCD with AB || DC intersect each other at the point O. If AB = 2CD, find the ratio of the areas of triangles AOB and COD.



Since AB || CD,

 $\therefore \angle OAB = \angle OCD$ and $\angle OBA = \angle ODC$ (Alternate interior angles)

In $\triangle AOB$ and $\triangle COD$,

 $\angle AOB = \angle COD$ (Vertically opposite angles)

 $\angle OAB = \angle OCD$ (Alternate interior angles)

∠OBA = ∠ODC (Alternate interior angles)

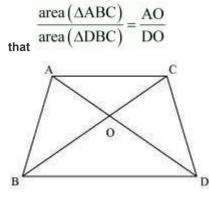
 \therefore ΔAOB âˆÂ¼ ΔCOD (By AAA similarity criterion)

$$\therefore \frac{\operatorname{ar}(\Delta AOB)}{\operatorname{ar}(\Delta COD)} = \left(\frac{AB}{CD}\right)^2$$

Since AB = 2 CD,
$$\therefore \frac{\operatorname{ar}(\Delta AOB)}{\operatorname{ar}(\Delta COD)} = \left(\frac{2 CD}{CD}\right)^2 = \frac{4}{1} = 4:1$$

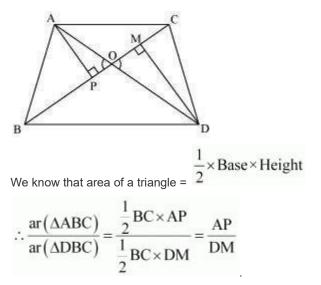
Q3 :

In the following figure, ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, show



Answer :

Let us draw two perpendiculars AP and DM on line BC.



In $\triangle APO$ and $\triangle DMO$,

$$\angle APO = \angle DMO$$
 (Each = 90°)

∠AOP = ∠DOM (Vertically opposite angles)

: $\Delta APO \tilde{A} \not\in \ddot{E} \uparrow \hat{A} / \Delta DMO$ (By AA similarity criterion)

$$\therefore \frac{AP}{DM} = \frac{AO}{DO}$$
$$\Rightarrow \frac{ar(\Delta ABC)}{ar(\Delta DBC)} = \frac{AO}{DO}$$

Q4 :

If the areas of two similar triangles are equal, prove that they are congruent.

Answer :

Let us assume two similar triangles as $\triangle ABC \tilde{A} \notin \ddot{E} \dagger \hat{A} \frac{1}{4} \Delta PQR$.

$$\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta PQR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{AC}{PR}\right)^2 \qquad (1)$$

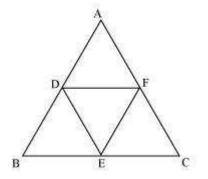
Given that, ar $(\Delta ABC) = \operatorname{ar}(\Delta PQR)$
 $\Rightarrow \frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta PQR)} = 1$
Putting this value in equation (1), we obtain
$$1 = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{AC}{PR}\right)^2$$

 $\Rightarrow AB = PQ, BC = QR, \text{ and } AC = PR$
 $\therefore \Delta ABC \cong \Delta PQR$ (By SSS congruence criterion

Q5 :

D, E and F are respectively the mid-points of sides AB, BC and CA of \triangle ABC. Find the ratio of the area of \triangle DEF and \triangle ABC.

Answer :



D and E are the mid-points of $\triangle ABC$.

$$\therefore DE \parallel AC \text{ and } DE = \frac{1}{2} AC$$
In $\triangle BED$ and $\triangle BCA$,
 $\angle BED = \angle BCA$ (Corresponding angles)
 $\angle BDE = \angle BAC$ (Corresponding angles)
 $\angle EBD = \angle CBA$ (Common angles)
 $\therefore \triangle BED \sim \triangle BCA$ (AAA similarity criterion)
 $\frac{ar(\Delta BED)}{ar(\Delta BCA)} = \left(\frac{DE}{AC}\right)^2$
 $\Rightarrow \frac{ar(\Delta BED)}{ar(\Delta BCA)} = \frac{1}{4}$
 $\Rightarrow ar(\Delta BED) = \frac{1}{4}ar(\Delta BCA)$
Similarly, $ar(\Delta CFE) = \frac{1}{4}ar(CBA)$ and $ar(\Delta ADF) = \frac{1}{4}ar(\Delta ABC)$
Also, $ar(\Delta DEF) = ar(\Delta ABC) - [ar(\Delta BED) + ar(\Delta CFE) + ar(\Delta ADF)]$
 $\Rightarrow ar(\Delta DEF) = ar(\Delta ABC) - \frac{3}{4}ar(\Delta ABC) = \frac{1}{4}ar(\Delta ABC)$
 $\Rightarrow \frac{ar(\Delta DEF)}{ar(\Delta ABC)} = \frac{1}{4}$

Q6 :

Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Answer :

s B

Let us assume two similar triangles as $\triangle ABC \tilde{A} \notin \ddot{E} \dagger \hat{A} \frac{1}{4} \Delta PQR$. Let AD and PS be the medians of these triangles.

[∵] ΔABC âˆÂ¼ ΔPQR

$$\therefore \frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR} \dots (1)$$

 $\angle A = \angle P, \angle B = \angle Q, \angle C = \angle R \dots (2)$

Since AD and PS are medians,

$$\therefore BD = DC = \frac{\frac{BC}{2}}{\frac{QR}{2}}$$

And, QS = SR =

Equation (1) becomes

$$\frac{AB}{PQ} = \frac{BD}{QS} = \frac{AC}{PR} \dots (3)$$

In $\triangle ABD$ and $\triangle PQS$,

 $\angle B = \angle Q$ [Using equation (2)]

$$\frac{AB}{PQ} = \frac{BD}{QS}$$
[Using equation (3)]

 \therefore ΔABD âˆÂ¼ ΔPQS (SAS similarity criterion)

Therefore, it can be said that

$$\frac{AB}{PQ} = \frac{BD}{QS} = \frac{AD}{PS}$$

$$\frac{ar(\Delta ABC)}{ar(\Delta PQR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{AC}{PR}\right)^2$$

From equations (1) and (4), we may find that

$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR} = \frac{AD}{PS}$$

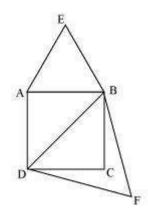
And hence,

$$\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta PQR)} = \left(\frac{AD}{PS}\right)^2$$

Q7 :

Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

Answer :



Let ABCD be a square of side a.

Therefore, its diagonal = $\sqrt{2}a$

Two desired equilateral triangles are formed as $\triangle ABE$ and $\triangle DBF$.

Side of an equilateral triangle, $\triangle ABE$, described on one of its sides = *a*

Side of an equilateral triangle, ΔDBF , described on one of its diagonals = $\sqrt{2}a$

We know that equilateral triangles have all its angles as 60 ° and all its sides of the same length. Therefore, all equilateral triangles are similar to each other. Hence, the ratio between the areas of these triangles will be equal to the square of the ratio between the sides of these triangles.

$$\frac{\text{Area of } \Delta \text{ ABE}}{\text{Area of } \Delta \text{ DBF}} = \left(\frac{a}{\sqrt{2}a}\right)^2 = \frac{1}{2}$$

Q8 :

ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Ratio of the area of triangles ABC and BDE is

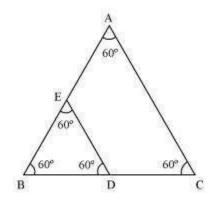
(A) 2 : 1

(B) 1 : 2

(C) 4 : 1

(D) 1 : 4

Answer :



We know that equilateral triangles have all its angles as 60 ° and all its sides of the same length. Therefore, all equilateral triangles are similar to each other. Hence, the ratio between the areas of these triangles will be equal to the square of the ratio between the sides of these triangles.

Let side of $\triangle ABC = x$

Therefore, side of

$$\Delta BDE = \frac{x}{2}$$

$$\therefore \frac{\operatorname{area}(\Delta ABC)}{\operatorname{area}(\Delta BDE)} = \left(\frac{x}{\frac{x}{2}}\right)^2 = \frac{4}{1}$$

Hence, the correct answer is (C).

Q9 :

Sides of two similar triangles are in the ratio 4 : 9. Areas of these triangles are in the ratio

(A) 2 : 3

(B) 4 : 9

(C) 81 : 16

(D) 16 : 81

Answer :

If two triangles are similar to each other, then the ratio of the areas of these triangles will be equal to the square of the ratio of the corresponding sides of these triangles.

It is given that the sides are in the ratio 4:9.

$$\left(\frac{4}{9}\right)^2 = \frac{16}{81}$$

Therefore, ratio between areas of these triangles =

Hence, the correct answer is (D).

Exercise 6.5 : Solutions of Questions on Page Number : 150 Q1 :

Sides of triangles are given below. Determine which of them are right triangles? In case of a right triangle, write the length of its hypotenuse.

(i) 7 cm, 24 cm, 25 cm

(ii) 3 cm, 8 cm, 6 cm

- (iii) 50 cm, 80 cm, 100 cm
- (iv) 13 cm, 12 cm, 5 cm

Answer :

(i) It is given that the sides of the triangle are 7 cm, 24 cm, and 25 cm.

Squaring the lengths of these sides, we will obtain 49, 576, and 625.

49 + 576 = 625

Or.
$$7^2 + 24^2 = 25^2$$

The sides of the given triangle are satisfying Pythagoras theorem.

Therefore, it is a right triangle.

We know that the longest side of a right triangle is the hypotenuse.

Therefore, the length of the hypotenuse of this triangle is 25 cm.

(ii) It is given that the sides of the triangle are 3 cm, 8 cm, and 6 cm.

Squaring the lengths of these sides, we will obtain 9, 64, and 36.

However, $9 + 36 \neq 64$ Or,

 $3^2 + 6^2 \neq 8^2$

Clearly, the sum of the squares of the lengths of two sides is not equal to the square of the length of the third side.

Therefore, the given triangle is not satisfying Pythagoras theorem.

Hence, it is not a right triangle.

(iii)Given that sides are 50 cm, 80 cm, and 100 cm.

Squaring the lengths of these sides, we will obtain 2500, 6400, and 10000.

However, 2500 + 6400 ≠ 10000 Or,

 $50^2 + 80^2 \neq 100^2$

Clearly, the sum of the squares of the lengths of two sides is not equal to the square of the length of the third side.

Therefore, the given triangle is not satisfying Pythagoras theorem.

Hence, it is not a right triangle.

(iv)Given that sides are 13 cm, 12 cm, and 5 cm.

Squaring the lengths of these sides, we will obtain 169, 144, and 25.

Clearly, 144 +25 = 169

Or,
$$12^2 + 5^2 = 13^2$$

The sides of the given triangle are satisfying Pythagoras theorem.

Therefore, it is a right triangle.

We know that the longest side of a right triangle is the hypotenuse.

Therefore, the length of the hypotenuse of this triangle is 13 cm.

Q2 :

PQR is a triangle right angled at P and M is a point on QR such that $PM \perp QR$. Show that $PM^2 = QM \times MR$.

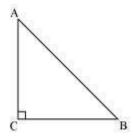
Answer :

Q3 :

$$P$$
Let ∠MPR = x
InΔMPR,
∠MRP = 180° -90° - x
∠MRP = 90° - x
Similarly, inΔMPQ,
∠MPQ = 90° - ∠MPR
= 90° - x
∠MQP = 180° - 90° - (90° - x)
∠MQP = x
InΔQMP and ΔPMR,
∠MPQ = ∠MRP
∠PMQ = ∠MRP
∠MQP = ∠MPR
∴ ΔQMP - ΔPMR (By AAA similarity criterion)
⇒ $\frac{QM}{PM} = \frac{MP}{MR}$
⇒ PM² = QM × MR

ABC is an isosceles triangle right angled at C. prove that $AB^2 = 2 AC^2$.

Answer:



Given that $\triangle ABC$ is an isosceles triangle.

∴AC = CB

Applying Pythagoras theorem in $\triangle ABC$ (i.e., right-angled at point C), we obtain

$$AC^{2} + CB^{2} = AB^{2}$$

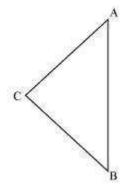
$$\Rightarrow AC^{2} + AC^{2} = AB^{2} \qquad (AC = CB)$$

$$\Rightarrow 2AC^{2} = AB^{2}$$

Q4 :

ABC is an isosceles triangle with AC = BC. If $AB^2 = 2 AC^2$, prove that ABC is a right triangle.

Answer :



Given that,

$$AB^{2} = 2AC^{2}$$

$$\Rightarrow AB^{2} = AC^{2} + AC^{2}$$

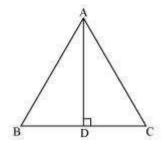
$$\Rightarrow AB^{2} = AC^{2} + BC^{2} \text{ (As AC = BC)}$$

The triangle is satisfying the pythagoras theorem. Therefore, the given triangle is a right - angled triangle.

Q5 :

ABC is an equilateral triangle of side 2a. Find each of its altitudes.

Answer:



Let AD be the altitude in the given equilateral triangle, ΔABC .

We know that altitude bisects the opposite side.

∴ BD = DC = a

In $\triangle ADB$,

 $\angle ADB = 90^{\circ}$

Applying pythagoras theorem, we obtain

$$AD^{2} + DB^{2} = AB^{2}$$

$$\Rightarrow AD^{2} + a^{2} = (2a)^{2}$$

$$\Rightarrow AD^{2} + a^{2} = 4a^{2}$$

$$\Rightarrow AD^{2} = 3a^{2}$$

$$\Rightarrow AD = a\sqrt{3}$$

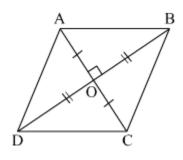
In an equilateral triangle, all the altitudes are equal in length.

Therefore, the length of each altitude will be $\sqrt{3}a$.

Q6 :

Prove that the sum of the squares of the sides of rhombus is equal to the sum of the squares of its diagonals.

Answer:



Ιη ΔΑΟΒ, ΔΒΟΟ, ΔΟΟ, ΔΑΟΟ,

Applying Pythagoras theorem, we obtain

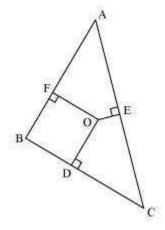
$AB^2 = AO^2 + OB^2$	(1)
$BC^2 = BO^2 + OC^2$	(2)
$CD^2 = CO^2 + OD^2$	(3)
$AD^2 = AO^2 + OD^2$	(4)

Adding all these equations, we obtain

$$AB^{2} + BC^{2} + CD^{2} + AD^{2} = 2(AO^{2} + OB^{2} + OC^{2} + OD^{2})$$
$$= 2\left[\left(\frac{AC}{2}\right)^{2} + \left(\frac{BD}{2}\right)^{2} + \left(\frac{AC}{2}\right)^{2} + \left(\frac{BD}{2}\right)^{2}\right]$$
(Diagonals bisect each other)
$$= 2\left[\frac{(AC)^{2}}{2} + \frac{(BD)^{2}}{2}\right]$$
$$= (AC)^{2} + (BD)^{2}$$

Q7 :

In the following figure, O is a point in the interior of a triangle ABC, OD \perp BC, OE \perp AC and OF \perp AB. Show that

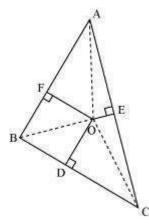


(i) $OA^2 + OB^2 + OC^2 - OD^2 - OE^2 - OF^2 = AF^2 + BD^2 + CE^2$

(ii) $AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2$

Answer :

Join OA, OB, and OC.



(i) Applying Pythagoras theorem in $\triangle AOF$, we obtain

$$OA^2 = OF^2 + AF^2$$

Similarly, in ΔBOD,

$$OB^2 = OD^2 + BD^2$$

Similarly, in $\triangle COE$,

$$OC^2 = OE^2 + EC^2$$

Adding these equations,

$$OA^{2} + OB^{2} + OC^{2} = OF^{2} + AF^{2} + OD^{2} + BD^{2} + OE^{2} + EC^{2}$$

 $OA^{2} + OB^{2} + OC^{2} - OD^{2} - OE^{2} - OF^{2} = AF^{2} + BD^{2} + EC^{2}$

(ii) From the above result,

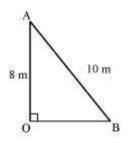
$$AF^{2} + BD^{2} + EC^{2} = (OA^{2} - OE^{2}) + (OC^{2} - OD^{2}) + (OB^{2} - OF^{2})$$

:. $AF^{2} + BD^{2} + EC^{2} = AE^{2} + CD^{2} + BF^{2}$

Q8 :

A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.

Answer :



Let OA be the wall and AB be the ladder.

Therefore, by Pythagoras theorem,

$$AB^{2} = OA^{2} + BO^{2}$$
$$(10 m)^{2} = (8 m)^{2} + OB^{2}$$
$$100 m^{2} = 64 m^{2} + OB^{2}$$
$$OB^{2} = 36 m^{2}$$
$$OB = 6 m$$

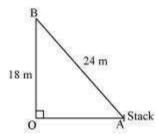
Therefore, the distance of the foot of the ladder from the base of the wall is 6 m.

Q9 :

A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

m.

Answer :



Let OB be the pole and AB be the wire.

By Pythagoras theorem,

$$AB^{2} = OB^{2} + OA^{2}$$

$$(24 \text{ m})^{2} = (18 \text{ m})^{2} + OA^{2}$$

$$OA^{2} = (576 - 324) \text{ m}^{2} = 252 \text{ m}^{2}$$

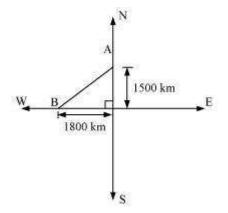
$$OA = \sqrt{252} \text{ m} = \sqrt{6 \times 6 \times 7} \text{ m} = 6\sqrt{7} \text{ m}$$
Therefore, the distance from the base is $6\sqrt{7}$

Q10:

An aeroplane leaves an airport and flies due north at a speed of 1,000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1,200 km per hour. How far apart will be

the two planes after
$$1\frac{1}{2}$$
 hours?

Answer:



Distance travelled by the plane flying towards north in

$$1\frac{1}{2}$$
 hrs = 1,000×1 $\frac{1}{2}$ = 1,500 km

$$1\frac{1}{2}$$
 hrs = 1,200× $1\frac{1}{2}$ = 1,800 km

Similarly, distance travelled by the plane flying towards west in

Let these distances be represented by OA and OB respectively.

Applying Pythagoras theorem,

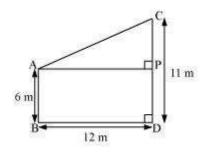
Distance between these planes after
$$1\frac{1}{2}$$
 hrs
= $\left(\sqrt{(1,500)^2 + (1,800)^2}\right)$ km = $\left(\sqrt{2250000 + 3240000}\right)$ km
= $\left(\sqrt{5490000}\right)$ km = $\left(\sqrt{9 \times 610000}\right)$ km = $300\sqrt{61}$ km

Therefore, the distance between these planes will be $300\sqrt{61}$ km after $1\frac{1}{2}$ hrs

Q11 :

Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m, find the distance between their tops.

Answer :



Let CD and AB be the poles of height 11 m and 6 m.

Therefore, CP = 11 - 6 = 5 m

From the figure, it can be observed that AP = 12m

Applying Pythagoras theorem for $\triangle APC$, we obtain

$$AP^{2} + PC^{2} = AC^{2}$$

$$(12 m)^{2} + (5 m)^{2} = AC^{2}$$

$$AC^{2} = (144 + 25)m^{2} = 169 m^{2}$$

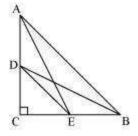
$$AC = 13 m$$

Therefore, the distance between their tops is 13 m.

Q12 :

D and E are points on the sides CA and CB respectively of a triangle ABC right angled at C. Prove that $AE^{2+}BD^{2} = AB^{2} + DE^{2}$

Answer :

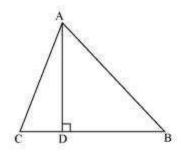


Applying Pythagoras theorem in ΔACE, we obtain

AC² + CE² = AE² ... (1) Applying Pythagoras theorem in Δ BCD, we obtain BC² + CD² = BD² ... (2) Using equation (1) and equation (2), we obtain AC² + CE² + BC² + CD² = AE² + BD² ... (3) Applying Pythagoras theorem in Δ CDE, we obtain DE² = CD² + CE² Applying Pythagoras theorem in Δ ABC, we obtain AB² = AC² + CB² Putting the values in equation (3), we obtain DE² + AB² = AE² + BD²

Q13 :

The perpendicular from A on side BC of a \triangle ABC intersect BC at D such that DB = 3 CD. Prove that 2 AB² = 2 AC² + BC²



Answer :

Applying Pythagoras theorem for \triangle ACD, we obtain

AC² = AD²+DC² $AD² = AC² - DC² \qquad ... (1)$

Applying Pythagoras theorem in $\triangle ABD$, we obtain

 $AB^{2} = AD^{2} + DB^{2}$ $AD^{2} = AB^{2} - DB^{2} \qquad ... (2)$ From equation (1) and equation (2), we obtain $AC^{2} - DC^{2} = AB^{2} - DB^{2} \qquad ... (3)$ It is given that 3DC = DB $\therefore DC = \frac{BC}{4} \text{ and } DB = \frac{3BC}{4}$

Putting these values in equation (3), we obtain

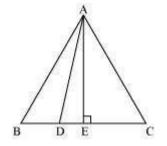
$$AC^{2} - \left(\frac{BC}{4}\right)^{2} = AB^{2} - \left(\frac{3BC}{4}\right)^{2}$$
$$AC^{2} - \frac{BC^{2}}{16} = AB^{2} - \frac{9BC^{2}}{16}$$
$$16AC^{2} - BC^{2} = 16AB^{2} - 9BC^{2}$$
$$16AB^{2} - 16AC^{2} = 8BC^{2}$$
$$2AB^{2} = 2AC^{2} + BC^{2}$$

Q14 :

1

In an equilateral triangle ABC, D is a point on side BC such that BD = $\overline{3}$ BC. Prove that 9 AD² = 7 AB².

Answer :



Let the side of the equilateral triangle be a, and AE be the altitude of \triangle ABC.

 $\therefore BE = \frac{\frac{BC}{2}}{2} = \frac{\frac{a}{2}}{2} EC =$ And, AE $= \frac{\frac{a\sqrt{3}}{2}}{\frac{1}{3}}_{BC}$ Given that, BD =

$$\stackrel{\text{``BD}}{=} \frac{a}{3}$$

DE =
$$\frac{a}{2} - \frac{a}{3} = \frac{a}{6}$$
 BE - BD =

Applying Pythagoras theorem in $\Delta \text{ADE},$ we obtain

2

$$AD^2 = AE^2 + DE^2$$

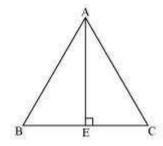
$$AD^{2} = \left(\frac{a\sqrt{3}}{2}\right)^{2} + \left(\frac{a}{6}\right)$$
$$= \left(\frac{3a^{2}}{4}\right) + \left(\frac{a^{2}}{36}\right)$$
$$= \frac{28a^{2}}{36}$$
$$= \frac{7}{9}AB^{2}$$

 \Rightarrow 9 AD² = 7 AB²

Q15 :

In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

Answer:



Let the side of the equilateral triangle be a, and AE be the altitude of ΔABC .

$$\therefore BE = EC = \frac{BC}{2} = \frac{a}{2}$$

Applying Pythagoras theorem in $\Delta ABE,$ we obtain

 $AB^2 = AE^2 + BE^2$

$$a^{2} = AE^{2} + \left(\frac{a}{2}\right)^{2}$$
$$AE^{2} = a^{2} - \frac{a^{2}}{4}$$
$$AE^{2} = \frac{3a^{2}}{4}$$

4AE² = 3*a*²

 \Rightarrow 4 × (Square of altitude) = 3 × (Square of one side)

Q16 :

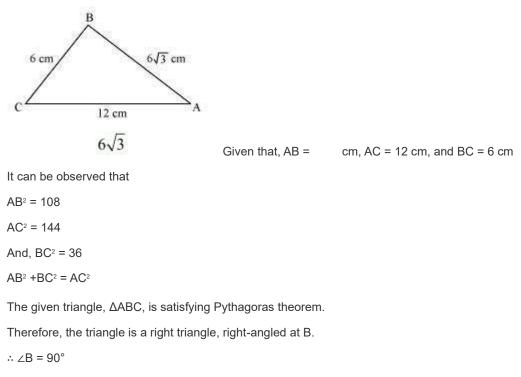
Tick the correct answer and justify: In $\triangle ABC$, $AB = \frac{6\sqrt{3}}{3}$ cm, AC = 12 cm and BC = 6 cm.

The angle B is:

(A) 120° (B) 60°

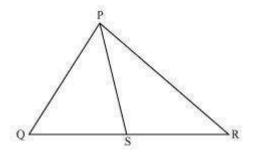
(C) 90° (D) 45°

Answer :

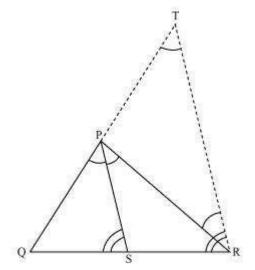


Hence, the correct answer is (C).

Exercise 6.6 : Solutions of Questions on Page Number : 152 Q1 :



Answer :



Let us draw a line segment RT parallel to SP which intersects extended line segment QP at point T.

Given that, PS is the angle bisector of \angle QPR.

 $\angle QPS = \angle SPR \dots (1)$

By construction,

 \angle SPR = \angle PRT (As PS || TR) ... (2)

 $\angle QPS = \angle QTR (As PS || TR) \dots (3)$

Using these equations, we obtain

∠PRT = ∠QTR

 \therefore PT = PR

By construction,

PS || TR

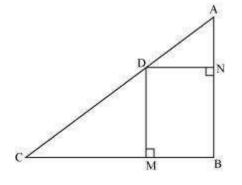
By using basic proportionality theorem for ΔQTR ,

QSSR=QPPT		
⇒QSSR		
Q2 :		

In the given figure, D is a point on hypotenuse AC of \triangle ABC, DM \perp BC and DN \perp AB, Prove that:

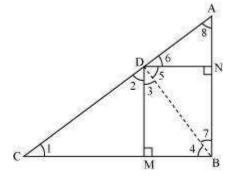
(i) $DM^2 = DN.MC$

(ii) DN² = DM.AN



Answer :

(i)Let us join DB.



We have, DN || CB, DM || AB, and $\angle B = 90^{\circ}$

: DMBN is a rectangle.

 \therefore DN = MB and DM = NB

The condition to be proved is the case when D is the foot of the perpendicular drawn from B to AC.

∴ ∠CDB = 90°

$$\Rightarrow \angle 2 + \angle 3 = 90^{\circ} \dots (1)$$

In ΔCDM,

 $\angle 1 + \angle 2 + \angle DMC = 180^{\circ}$

 $\Rightarrow \angle 1 + \angle 2 = 90^{\circ} \dots (2)$

In ΔDMB,

 $\angle 3 + \angle DMB + \angle 4 = 180^{\circ}$

 $\Rightarrow \angle 3 + \angle 4 = 90^{\circ} \dots (3)$

From equation (1) and (2), we obtain

∠1 = ∠3

From equation (1) and (3), we obtain

∠2 = ∠4

In Δ DCM and Δ BDM,

 $\angle 1 = \angle 3$ (Proved above)

 $\angle 2 = \angle 4$ (Proved above)

.: ΔDCM âˆÂ¼ ΔBDM (AA similarity criterion)

$$\Rightarrow \frac{BM}{DM} = \frac{DM}{MC}$$
$$\Rightarrow \frac{DN}{DM} = \frac{DM}{MC}$$
 (BM = DN)

 $\Rightarrow DM^2 = DN \times MC$

(ii) In right triangle DBN,

∠5 + ∠7 = 90° … (4)

In right triangle DAN,

∠6 + ∠8 = 90° ... (5)

D is the foot of the perpendicular drawn from B to AC.

 $\therefore \angle ADB = 90^{\circ}$

 $\Rightarrow \angle 5 + \angle 6 = 90^{\circ} \dots (6)$

From equation (4) and (6), we obtain

∠6 = ∠7

From equation (5) and (6), we obtain

∠8 = ∠5

In Δ DNA and Δ BND,

 $\angle 6 = \angle 7$ (Proved above)

 $\angle 8 = \angle 5$ (Proved above)

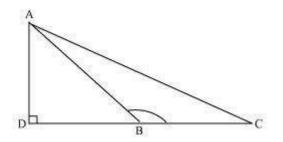
.: ΔDNA âˆÂ¼ ΔBND (AA similarity criterion)

$$\Rightarrow \frac{AN}{DN} = \frac{DN}{NB}$$
$$\Rightarrow DN^{2} = AN \times NB$$

 \Rightarrow DN² = AN × DM (As NB = DM)

Q3 :

In the given figure, ABC is a triangle in which \angle ABC> 90° and AD \perp CB produced. Prove that AC² = AB² + BC² + 2BC.BD.



Answer :

Applying Pythagoras theorem in \triangle ADB, we obtain

 $AB^2 = AD^2 + DB^2 \dots (1)$

Applying Pythagoras theorem in \triangle ACD, we obtain

 $AC^2 = AD^2 + DC^2$

 $AC^{2} = AD^{2} + (DB + BC)^{2}$

 $AC^2 = AD^2 + DB^2 + BC^2 + 2DB \times BC$

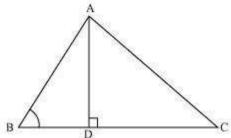
 $AC^2 = AB^2 + BC^2 + 2DB \times BC$ [Using equation (1)]

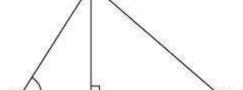
Answer:

 $AD^2 + DB^2 = AB^2$

 $\Rightarrow AD^2 = AB^2 - DB^2 \dots (1)$

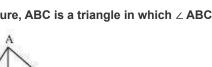
In the given figure, ABC is a triangle in which \angle ABC < 90° and AD \perp BC. Prove that AC² = AB² + BC² - 2BC.BD.





Applying Pythagoras theorem in $\triangle ADB$, we obtain

Applying Pythagoras theorem in \triangle ADC, we obtain



$$AD^{2} + DC^{2} = AC^{2}$$

 $AB^{2} - BD^{2} + DC^{2} = AC^{2}$ [Using equation (1)]
 $AB^{2} - BD^{2} + (BC - BD)^{2} = AC^{2}$
 $AC^{2} = AB^{2} - BD^{2} + BC^{2} + BD^{2} - 2BC \times BD$
 $= AB^{2} + BC^{2} - 2BC \times BD$

Q5 :

In the given figure, AD is a median of a triangle ABC and AM \perp BC. Prove that:

(i)

$$AC^{2} = AD^{2} + BC.DM + \left(\frac{BC}{2}\right)^{2}$$
(ii)

$$AB^{2} = AD^{2} - BC.DM + \left(\frac{BC}{2}\right)^{2}$$
(iii)

$$AC^{2} + AB^{2} = 2AD^{2} + \frac{1}{2}BC^{2}$$
(iii)

$$B = AD^{2} - BC.DM + \left(\frac{BC}{2}\right)^{2}$$
(iii)

$$AC^{2} + AB^{2} = 2AD^{2} + \frac{1}{2}BC^{2}$$
(iii)

$$AC^{2} + AB^{2} = 2AD^{2} + \frac{1}{2}BC^{2}$$

Answer:

(i) Applying Pythagoras theorem in $\triangle AMD$, we obtain $AM^2 + MD^2 = AD^2 \dots$ (1)

Applying Pythagoras theorem in ΔAMC , we obtain

 $AM^2 + MC^2 = AC^2$

$$AM^{2} + (MD + DC)^{2} = AC^{2}$$

 $(AM^2 + MD^2) + DC^2 + 2MD.DC = AC^2$

 $AD^2 + DC^2 + 2MD.DC = AC^2$ [Using equation (1)]

$$DC = \frac{BC}{2}$$
, we obtain

$$AD^{2} + \left(\frac{BC}{2}\right)^{2} + 2MD \cdot \left(\frac{BC}{2}\right) = AC^{2}$$
$$AD^{2} + \left(\frac{BC}{2}\right)^{2} + MD \times BC = AC^{2}$$

(ii) Applying Pythagoras theorem in ΔABM , we obtain

$$AB^2 = AM^2 + MB^2$$

 $= (AD^2 - DM^2) + MB^2$

$$= (AD^2 - DM^2) + (BD - MD)^2$$

 $= AD^2 - DM^2 + BD^2 + MD^2 - 2BD \times MD$

$$= AD^2 + BD^2 - 2BD \times MD$$

$$= AD^{2} + \left(\frac{BC}{2}\right)^{2} - 2\left(\frac{BC}{2}\right) \times MD$$
$$= AD^{2} + \left(\frac{BC}{2}\right)^{2} - BC \times MD$$

(iii)Applying Pythagoras theorem in ΔABM , we obtain

$$AM^{2} + MB^{2} = AB^{2} \dots (1)$$

Applying Pythagoras theorem in ΔAMC , we obtain

 $AM^2 + MC^2 = AC^2 \dots (2)$

Adding equations (1) and (2), we obtain

 $2AM^{2} + MB^{2} + MC^{2} = AB^{2} + AC^{2}$

 $2AM^{2} + (BD - DM)^{2} + (MD + DC)^{2} = AB^{2} + AC^{2}$

 $2AM^{2}+BD^{2} + DM^{2} - 2BD.DM + MD^{2} + DC^{2} + 2MD.DC = AB^{2} + AC^{2}$ $2AM^{2} + 2MD^{2} + BD^{2} + DC^{2} + 2MD (-BD + DC) = AB^{2} + AC^{2}$

$$2\left(AM^{2} + MD^{2}\right) + \left(\frac{BC}{2}\right)^{2} + \left(\frac{BC}{2}\right)^{2} + 2MD\left(-\frac{BC}{2} + \frac{BC}{2}\right) = AB^{2} + AC^{2}$$
$$2AD^{2} + \frac{BC^{2}}{2} = AB^{2} + AC^{2}$$