## Sample Paper Class 11 Physics 2020-21

| Q. No                                                         | Marks      |
|---------------------------------------------------------------|------------|
| Ans1.(i) [ML2T-2]<br>(ii) Dimensionless                       | 1/2<br>1/2 |
| Ans2.Reaction is the force applied by the block on the Earth. | 1          |
| Ans3.Two advantages of 'l' shape of iron beams are            |            |
| (i)minimizes sagging                                          | 1/2        |
| (ii)minimizes buckling                                        | 1/2        |
| Ans4.Wire B.                                                  | 1          |
| Ans5.Natural Convection: Trade winds/Land and sea breeze      |            |
| Forced Convection: Human circulatory system                   | 1/2        |
| roreed convection. Human circulatory system.                  | 1/2        |
|                                                               |            |

Ans6.



1

1

Ans7.Because of a very small coefficient of linear expansion.

| Ans8.The frequency of free oscillations of a vibrating system.                                                                    | 1          |
|-----------------------------------------------------------------------------------------------------------------------------------|------------|
| Ans9.Absolute error is the magnitude of difference between the value of individualmeasurement and the true value of the quantity. | 1          |
| □t= t2-t1                                                                                                                         | I          |
| = $(50 \pm 0.5)$ - $(20 \pm 0.5)$<br>= $30^{\circ}$ C ± $1^{\circ}$ C                                                             | 1/2<br>1/2 |
| Ans10.(i) Velocity is negative as the slope of x-t graph is negative.                                                             | 1          |
| (ii)Acceleration is negative. The increasing slope indicates speeding up, hence the sign of acceleration and velocity are same.   | 1          |
|                                                                                                                                   | 1 (2       |
| Ans11. T $\Box \underline{2}$ usin g                                                                                              | 1/2        |
| $\Box$ usin $\Box$ $\Box \frac{gT}{2}$                                                                                            |            |
| Max. Height H $\Box \frac{4 \sin 2 \Box}{2g}$                                                                                     | 1/2        |
| $\Box \frac{(\text{u sin } \Box)2}{2g}$                                                                                           |            |
| □ gT2□<br>□ - <del>2</del> ⊟□                                                                                                     |            |
| □ <u>- □2g</u><br>2                                                                                                               | 1/2        |
| □ <u>g</u> T8                                                                                                                     |            |
|                                                                                                                                   | 1/2        |
| Ans12.(i) Because no reaction from any surface underneath is available which can make thehorse move forward.                      |            |
| (ii)Due to inertia of motion, the upper part of the body continues to                                                             | 1          |
| move along thetangent to the circular path of the bus.                                                                            | 1          |
| Ans13.Concurrent forces are the forces whose lines of action intersect at a common point.<br>Conditions:                          | 1          |
|                                                                                                                                   |            |
| 2.                                                                                                                                | 1/2        |
|                                                                                                                                   | 1/2        |

| Ans14.Because thegravitational force between the satellite and the earth provides thenecessary centripetal force required to keep it in its |             |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| orbit.<br>No, because New Delhi is not on the equatorial plane.                                                                             | 1<br>1<br>1 |
| Ans15.(a) All have same average K.E. as Kavdepends only on temperature.                                                                     | 1           |

(b)C, B and A asv

 $\sqrt{m}$ 

1rms□

OR

| (i)P | 1mn<br><del>3</del> V<br><del>2</del> ns | 1/2 |
|------|------------------------------------------|-----|
|      | Pi 1,                                    | 1/2 |

(ii) P 
$$2_{-F}^{-}$$
 1/2

=-6t2+ 12t + c

Ans16. (i) Q1\_\_\_\_T1\_1\_\_\_1 1/2 1/2

(ii) 
$$= 1 - 1 \square \frac{2}{T_1}$$
 1/2  
 $\square \square \square = 0.2$  1/2

Ans17.Motion in which the restoring force is always proportional to the displacement from the mean position and is directed against it.

Ans18. Fraction = 
$$K_E = \frac{m\frac{d_2(A2\Box y_2)\Box 2}{\frac{1}{2}m\Box 2A2}}{\frac{1}{2}m\Box 2A2}$$
  
and  $\frac{1}{4}\Box \frac{1}{4}$   
Ans19.  $x(t) = \Box \Box dt \Box \Box (\Box 12t\Box 12)dt$   
 $\frac{12t2\Box\Box}{2}\Box 12t\Box c$   
1/2

1⁄2

1 1

| Since, at t = 0, x(0) = 5, therefore, c = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Therefore $y(t) = 6t^2 + 1^2 t + 5 m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/2               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2               |
| Also, a $\Box = \frac{dv}{dt}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2               |
| at<br>12m/s <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| Ans20 E₁ 目2j^N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2               |
| $F_2 = 2\cos 60^{-0} i^2 \sin 60^{-0} j^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| □i^□√3j^N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/2               |
| $F^{3} \square \square \sin 60  {}^{0}i^{\cap} \square \cos 60  {}^{0}j^{\cap} \square \square \square \sqrt{3}i^{\cap} 1 \square j^{\cap} N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/2<br>1/2<br>1/2 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| $\begin{array}{c} \begin{array}{c} 3 \end{array} \\ 1 \end{array} \\ 1 \end{array} \\ \begin{array}{c} 1 \end{array} \\ 1 \end{array} \\ \begin{array}{c} 2 \end{array} \\ \begin{array}{c} 1 \end{array} \\ \begin{array}{c} 2 \end{array} \\ \begin{array}{c} 2 \end{array} \\ \begin{array}{c} 1 \end{array} \\ \begin{array}{c} 2 \end{array} \\ \begin{array}{c} 2 \end{array} \\ \begin{array}{c} 2 \end{array} \\ \begin{array}{c} 1 \end{array} \\ \begin{array}{c} 2 \end{array} \\ \end{array} \\ \begin{array}{c} 2 \end{array} \\ \begin{array}{c} 2 \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ |                   |

Ans21.(i) Conservative: spring force, gravitational force

Non-conservative: Human push, viscous drag

(ii)F 
$$\frac{dU}{dr}$$
 1

Ans22.Definition: Ratio of relative speed of separation to relative speed of approach.
 No, not for each body separately. Total energyand total momentum of the whole isolatedsystem will be conserved.
 Because collision between fast neutron and near stationary deutrons in heavy waterresults in maximum exchange of kinetic energy as their masses are comparable.

1

1

1

1

Ans23. (a) 
$$F'_{11}$$
  $Di \hat{1}_{13} \hat{1}_{5} \hat{1}_{7} \hat{1}_{11} \hat{1}_{13} \hat{1}_{13} \hat{1}_{14} \hat{$ 

□ (5 □ 3)i ^ □ (5 □ 7)j ^ □ (3 □ 7)k ^

1

1/2

| $102i^{12}j^{10}k^{10}$                                                | 1/2 |
|------------------------------------------------------------------------|-----|
| (b)Curl the fingers of right hand along the direction of rotation, the |     |
| out stretched thumppoints along the direction of angular velocity.     | 1   |
|                                                                        |     |
| Ans24.If we define perpendicular axesX.Y. andZ(which meet at origin    |     |

O)so that the body lies in theXYplane, and theZaxis is perpendicular to the plane ofthe body and

- □ *IX*be the moment of inertia of the body about the*X*axis;
- □ *IY*be the moment of inertia of the body about the *Y*axis; and
- □ *IZ*be the moment of inertia of the body about the*Z*axis.

The perpendicular axis theorem states that



1

$$\square = \frac{5.41 \text{Gm}^2}{\text{a}}$$

Potential V(r) = 
$$\begin{bmatrix} \frac{Gm_1}{r_1} \\ \frac{4Gm}{a} \end{bmatrix} = \begin{bmatrix} \frac{42Gm}{a} \\ \frac{a}{2} \end{bmatrix} = \begin{bmatrix} \frac{42Gm}{a} \\ \frac{a}{2} \end{bmatrix} = \begin{bmatrix} \frac{42Gm}{a} \\ 1/2 \end{bmatrix}$$

Ans26.Main features of kinetic theory of an ideal gasareabout

(i) Molecules(ii) Motion (iii)Collisions (iv)Forces (v) Time(vi) Path

1/2 × 6

Ans27.Thefirst law of thermodynamicsis an expression of the conservation of energy.lt states:

The increase in the internal energy of a system is equal to the amount of energy added by heating the system, minus the amount lost as a result of the work done by the system on its surroundings.

|                                                     | 1/2                    |
|-----------------------------------------------------|------------------------|
| Derivation: 1. Expression for dU1at constant volume | 1/2                    |
| 2.Expression for dU2at constant pressure            | 1 <del>/2</del><br>1/2 |
| 3.PdV = n R dT                                      | 1/2                    |
| 4.dU1= dU2with reason                               |                        |

| 5.Cp–Cv= R | 1/. | 2 |
|------------|-----|---|
|            | 17. | - |





$$ma = fr + mg sin[]$$
 1/2

  $ma = \Box mg cos[] + mg sin[]$ 
 1/2

  $a = (\Box cos[] + sin[])g = (0.1cos30^\circ + sin30^\circ)10$ 
 1/2

$$\Box \frac{\sqrt{3}}{2} \Box_5 \Box 5.87 \text{ m/s2}$$
 1/2

## Ans29.Laminar flowoccurs when a fluid flows in parallel layers, with no disruption between the layers.



(b)

|                          | 1   |
|--------------------------|-----|
|                          | 1/2 |
| 1 41 104 10.61 104       | 1/2 |
| ∃ 3.4□104 P <sub>a</sub> |     |

## OR

| <b>Definition</b> :Thecontact angleis theangleat <u>which</u> aliquid/vapor<br>interface meets the solid surface. The contact angle is specific for<br>any given system and is determined by the interactions across the              |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| three interfaces.                                                                                                                                                                                                                     | 2   |
| For acute angle of contact.                                                                                                                                                                                                           |     |
| $\begin{array}{cccc} n.4r3 R \square & \square & 4R3 & \square & r & \square \\ 3 & 3 & & & n\overline{3} \end{array}$                                                                                                                | 1/2 |
| $\Box \frac{4\Box 10\Box 3}{10\Box 1} = 4 \times 10-4m$ (1000)3                                                                                                                                                                       | 1/2 |
| □A = n . 4□r2–4□R2                                                                                                                                                                                                                    |     |
| $= 4 \square R2 \qquad \square . n - 4 \square R2 \square 4 \square R2 \square n 3 \square 1 \square \square$ | 1/2 |
| = 4 × 3.14 × 16 × 10-16(10−1) = 9 × 64 × 3.14 × 10-6m2<br>Therefore.□E =□□□□A                                                                                                                                                         | 1/2 |
|                                                                                                                                                                                                                                       | 1/2 |
| = 0.07 × 9 × 64 × 3.14 × 10-6⊔1.23 × 10-2J                                                                                                                                                                                            | 1/2 |

Ans30.(i)-z direction

(ii) f 
$$\Box \frac{w}{2\Box}$$
 1/2

1

$$\Box \frac{500}{2} \Box \frac{250}{\Box} Hz$$
 1/2

$$(iii)\Box = \frac{2\Box}{R}$$

$$1/2$$

$$= \frac{2^{-1}}{0.025} 800 \text{m}$$
1/2
1/2

(iv) 
$$\square \square$$
  
R  
 $\square \frac{500}{0.025}$   $\square 2 \square 104 \text{ m/s}$   
1/2

| (v) 🛛 pmax 🗶 🗛                  | 1/2 |
|---------------------------------|-----|
| = 0.25 × 10-3× 500 = 0.125 cm/s | 1/2 |

## OR

| (a)Definition:TheDoppler effect isthe change infrequencyand wavelengthof awavefor an observer moving relative to the source of the waves.                                           | 1      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| (i)For the listener standing outside the circle, the whistle moves<br>towardshim as well as away from him. Therefore, the frequency<br>will appear to increase as well as decrease. | 2      |
| (ii)For the listener at the centre, the distance between him and the whistle remains constant. So, there will be no change in frequency.                                            | 2      |
| (b)Beat frequency = 5 Hz<br>application = tuning of musical instruments.                                                                                                            | 1<br>1 |