Sample Paper Class 11 Physics 2020-21

Q. NoMarksAns1.(i) [ML2T-2] 1/2
(ii) Dimensionless 1/2Ans2.Reaction is the force applied by the block on the Earth.1
Ans3.Two advantages of I' shape of iron beams are
(i)minimizes sagging $1 / 2$
(ii)minimizes buckling$1 / 2$
Ans4.Wire B.1
Ans5.Natural Convection: Trade winds/Land and sea breeze$1 / 2$
Forced Convection: Human circulatory system.$1 / 2$

Ans6.

Ans7.Because of a very small coefficient of linear expansion.

Ans8.The frequency of free oscillations of a vibrating system.

Ans9.Absolute error is the magnitude of difference between the value of individualmeasurement and the true value of the quantity.

$$
\begin{aligned}
\square \mathrm{t} & =\mathrm{t} 2-\mathrm{t} 1 \\
& =(50 \pm 0.5)-(20 \pm 0.5) \\
& =30^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}
\end{aligned}
$$

$$
1 / 2
$$

Ans10.(i) Velocity is negative as the slope of x - t graph is negative.
(ii)Acceleration is negative. The increasing slope indicates speeding up, hence the sign of acceleration and velocity are same.

Ans11. $\quad \frac{\mathrm{T} \text { QZusin }}{\mathrm{g}}$
$\square u \sin \square \square \frac{\mathrm{gT}}{2}$
Max. Height $H \square \frac{\mathrm{Z}_{1} \sin 2 \square}{2 g} \quad 1 / 2$
$\square \frac{(u \sin \mathrm{~g}) 2}{2 g}$

2
$\square \frac{\mathrm{gT}}{8}$

Ans12.(i) Because no reaction from any surface underneath is available which can make thehorse move forward.
(ii)Due to inertia of motion, the upper part of the body continues to move along thetangent to the circular path of the bus.

Ans13. Concurrent forces are the forces whose lines of action intersect at a common point.
Conditions:

Ans14.Because thegravitational force between the satellite and the earth provides thenecessary centripetal force required to keep it in its orbit.
Ans15.(a) All have same average K.E. as Kavdepends only on temperature.
(b)C, B and A asv $\quad 1 \mathrm{rms} \frac{}{\sqrt{\mathrm{m}}}$
OR
(i)P $\frac{1 \mathrm{mn} \square}{3} \square \square \mathrm{D}^{\mathrm{n}} \mathrm{s}$
$\frac{P_{i}}{P_{f}} \square \underline{z}$

Ans16. (i) Q1__TD 1
Q2 $\overline{T 2}$
पT2 $=320 \mathrm{~K}$ 1/2
(ii) $=1-\mathrm{TD} \quad \frac{2}{\mathrm{~T}_{1}}$

Ans17.Motion in which the restoring force is always proportional to the displacerngat fromplatemeanmposition, and is directed against it.
Ans18.

$$
\text { Fraction }=\frac{\mathrm{KE}}{\mathrm{TE}} \frac{\mathrm{~m}(2(\mathrm{~A} 2 \mathrm{Ly} 2) \mathrm{\square} 2}{\frac{1}{2} \mathrm{mb2A} 2}
$$

$$
3 \square \square \frac{1}{4} \square-
$$

Ans19. $\quad \mathrm{x}(\mathrm{t})=\mathrm{\square} \mathrm{Cdt} \square \mathrm{C}(\mathrm{\square} 12 \mathrm{t} \square 12) \mathrm{dt}$

$$
\begin{aligned}
& 12 \mathrm{t} 2 \mathrm{a} \frac{\mathrm{D}}{2} \mathrm{\square} 12 \mathrm{tac} \\
= & -6 \mathrm{t} 2+12 \mathrm{t}+\mathrm{c}
\end{aligned}
$$

Since, at $t=0, x(0)=5$, therefore, $c=5$
Therefore, $x(t)=-6 t 2+12 t+5 m$
$\begin{array}{ll}\text { Also, } a \square \frac{d v}{d t} & 1 / 2\end{array}$

- $12 \mathrm{~m} / \mathrm{s}^{2}$

Ans20.

$\square i^{\wedge} \square \sqrt{3 j}{ }^{\wedge} N$
$F^{3} \square \square \sin 600^{0} i^{\wedge} \square 1 \cos 600^{0} j^{\wedge}$
$\square \square \frac{\sqrt{3}}{2} i^{\wedge} \frac{1 \square}{2} j^{\wedge} N$

Ans21.(i) Conservative: spring force, gravitational force

Non-conservative: Human push, viscous drag
(ii)F $\frac{\mathrm{dUCD}}{\mathrm{dr}} \quad 1$

Ans22.Definition: Ratio of relative speed of separation to relative speed of approach.
No, not for each body separately. Total energyand total
 deutrons in heavy waterresults in maximum exchange of kinetic energy as their masses are comparable.

(b)Curl the fingers of right hand along the direction of rotation, the out stretched thumbpoints along the direction of angular velocity.

Ans24.If we define perpendicular axes X, Y, and Z (which meet at origin 0)so that the body lies in the XYplane, and theZaxis is perpendicular to the plane ofthe body and
\square IXbe the moment of inertia of the body about theXaxis;
\square IYbe the moment of inertia of the body about theYaxis; and
\square IZbe the moment of inertia of the body about theZaxis.
The perpendicular axis theorem states that

$$
\begin{aligned}
I Z & =I X+I Y \\
I & =M R 2 \\
& =2 \times(.50) 2=0.5 \mathrm{~kg} \mathrm{~m} 2 \\
I^{\prime} & =\mathrm{MR} 2+\mathrm{MR} 2 \\
& =2 \mathrm{MR} 2=2 \times 0.5 \\
& =1 \mathrm{~kg} \mathrm{~m} 2
\end{aligned}
$$

Ans25.

$U(r)=\frac{G m \square 1 m 2}{r_{12}}$
Therefore, total $\mathrm{U}=\square$

$$
\frac{4 G m^{2}}{a} \frac{\square 2 G m^{2}}{a \sqrt{2}}
$$

$$
\frac{2 G m 2}{a} \square^{2} \frac{1}{\sqrt{2}} \frac{\square}{\square}
$$

Potential $V(r)=\square \quad \frac{G m_{1}}{r_{1}}$

Ans26.Main featuresof kinetic theory of an ideal gasareabout
(i) Molecules
(ii) Motion (iii)

Collisions (iv)
Forces (v) Time
(vi) Path

Ans27.Thefirst law of thermodynamicsis an expression of the conservation of energy.It states:
The increase in the internal energy of a system is equal to the amount of energy added by heating the system, minus the amount lost as a result of the work done by the system on its surroundings.

Derivation: 1. Expression for dU1at constant volume
2.Expression for dU2at constant pressure
. $1 / 2$
3.PdV $=\mathrm{n}$ R dT $\quad 1 / 2$
4.dU1 = dU2 with reason
5. $\mathrm{Cp}-\mathrm{Cv}=\mathrm{R} \quad 1 / 2$

Ans28. (a)

Impulse = Area under $\mathrm{F}(\mathrm{t})$ graph

$$
\begin{aligned}
& =\text { area OABE + area BCDE } \\
& =5 \times 8+1 \times \frac{3 \times(10+5)}{2}
\end{aligned}
$$

$$
=40+45
$$

$$
2
$$

$$
=62.5 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

$$
\square p=m(\square-u)=\text { Impulse }
$$

Therefore, $7(\mathrm{D}-0)=62.5$

$$
\square=\frac{62.5}{7} \quad \square 9 \mathrm{~m} / \mathrm{s}
$$

(b)

$m a=f r+m g \sin \square$
$m a \quad 1 / 2$
ma $=\square m g c o s \square+m g s i n \square$
$a=(\square \cos \square+\sin \square) g=\left(0.1 \cos 30^{\circ}+\sin 30^{\circ}\right) 10$
$\square \frac{\sqrt{3}}{2} \square_{5} \square 5.87 \mathrm{~m} / \mathrm{s} 2$

Ans29.Laminar flowoccurs when a fluid flows in parallel layers, with no disruption between the layers.

$P_{1} \square \frac{1}{2} \square Z_{1-P} \quad \frac{1}{2} \square \square 2$ and $a_{1} \square \square a 2 \square 2$
Therefore, p2 पp1 $-\frac{2}{1}, \square \square$

OR
Definition:Thecontact angleis theangleat which aliquid/vapor \qquad
\qquad interface meets the solid surface. The contact angle is specific for any given system and is determined by the interactions across the three interfaces.

For acute angle of contact.

$\mathrm{DA}=\mathrm{n} .4 \mathrm{r} 2-4 \mathrm{R} 2$

n3

$$
=4 \times 3.14 \times 16 \times 10-16(10-1)=9 \times 64 \times 3.14 \times 10-6 \mathrm{~m} 2
$$

Therefore, $\mathrm{DE}=\mathrm{BLD} \mathrm{A}$

$$
=0.07 \times 9 \times 64 \times 3.14 \times 10-6[1.23 \times 10-2 \mathrm{~J}
$$Ans30.(i)-z direction1

(ii) $f \quad \square \frac{w}{2 \square}$ 1/2
$\square \frac{500}{2 \square} \square \frac{250}{\square} \mathrm{~Hz}$ 1/2
(iii) $\square=\frac{2 \square}{R}$ 1/2
$=\frac{2 \square \square}{0.025} 80 \square \mathrm{~m}$ 1/2
(iv) \quad 미 1/2
R $\square \frac{500}{0.025} \square 2 \square 104 \mathrm{~m} / \mathrm{s}$ $1 / 2$
(v) Dpmax \square В 1/2
$=0.25 \times 10-3 \times 500=0.125 \mathrm{~cm} / \mathrm{s}$ 1/2
OR
(a)Definition:TheDoppler effect isthe change infrequencyandwavelengthof awavefor an observer moving relative to the sourceof the waves.1
(i)For the listener standing outside the circle, the whistle movestowardshim as well as away from him. Therefore, the frequencywill appear to increase as well as decrease.
(ii)For the listener at the centre, the distance between him and the whistle remains constant. So, there will be no change in frequency.1
(b)Beat frequency $=5 \mathrm{~Hz}$ 1application = tuning of musical instruments. 1

