CBSE Class 11 Physics Model Paper Solution 2019

Q.No

Value Points
Marks1

1. No. it is true only for an isolated system. 2
$F_{e x t} \square \frac{d \beta}{d t}$

if	Fext 0	\square	$\frac{\square p}{d t} \square^{0}$	1
\square		2		

2. The statement is wrong. Work done is zero because the centripetal force cannot do any work on the earth. 1
3. Skidding will occur in the event of:
(a) v (the speed of the cyclist) being large.
(b)rbeing small
(c)The road surface being slippery.1
4. By lowering his hands, the cricket player increases the interval in which the catch is taken. This increase in time interval results in the less rate of change of momentum. Therefore, in accordance with Newton's second law of motion, less force acts on his hands and the player saves himself from being hurt. 1
5. Excess pressure in a bubble $\square \frac{4}{r}$ 1
Less the value of radius of bubble (r), greater is the excess1
pressure. 2
6. (a) Reversible process $\overline{2}$1
(b)Cyclic process 2
7. Inside a satellite, the body is in a state of weightlessness So that the effective value ofgis zero.

Thus, the pendulum will not oscillate at all and therefore the experiment cannot be performed.
z
8.False, water moves ina clockwise direction because on heating, water rushes from higher pressure area near B to lower pressure area near A.

18゙æa
9. t
v $t 2$
For $a \quad 0$
$v=$ constant

The corresponding velocity-time graph is

10. The two perpendicular forces acting on the body are shown below in the figure.

Let $F x 8 N$
Fy 6 N
प $F \quad \sqrt{F x \square \square_{2}^{2} y} 6$
$\square \sqrt{\text { 18 प }}$
F
$\square 10 \mathrm{~N}$

Direction of acceleration $\left(q_{\text {will }}\right.$ be the direction of force F, i.e.,
$\cos \quad \frac{F_{x}}{F} \square \frac{8}{10}$ 1
$\cos { }^{1}{ }^{4} \square$, with 8 Nforce. 2
11. Letmbe the mass of the body.

When the body falls from some height, potential energy at the top equals the gain in kinetic energy. The body loses some kinetic

$$
\begin{array}{ll}
\text { energy and again rises to some different height. } & \frac{1}{2} \\
\square & \text { Percentage loss in K.E日 } \frac{12 m g \quad 9 m g}{12 m g} \\
&
\end{array}
$$

$$
\begin{array}{ll}
\frac{3 m g}{12 m g} 100 \% & 1 \\
& 2 \\
=25 \% & 1 \\
& 2
\end{array}
$$

12. According to the law of conservation of angular momentum,

$$
\begin{array}{ll}
I_{1} 1 \square I_{2} & 1 \\
I 21_{1}^{2} \square I 2222 & 2 \\
I_{1} \square_{1} 21 \square I_{2} \square_{2} 22 &
\end{array}
$$

Or

$$
\begin{array}{llll}
\frac{1}{2} I 1 & \mathrm{P} I \frac{1}{2} & { }_{2}^{2} & 1 \\
2
\end{array}
$$

Thus, the rotational kinetic energy of the system increases on decreasing its moment of inertia.
13. The gravitational force of attraction betweenthe Earth and the Sun provides the necessary centripetal force.

Substituting the values and simplifying, weget

$M s \square^{2} 10{ }^{30} \mathrm{~kg}$

OR
Since, gat height $h_{\text {is given by }}$

$g_{h} \square g \frac{2 h \square}{1} \frac{2 h}{R G} \quad$ for $h \square \square R \square$
and similarty, we haveg at depth ${ }^{d}$ is given by

$g_{\text {g }} \square^{\text {d }}{ }_{\square}$	-
$1 \text { 相 }$	

But $g h g d \quad 2$

$1 \frac{\square^{2 h}}{R}-1 \frac{6}{R}$
$\frac{h}{d} \square \frac{1}{2}$
1
2
14. (i) An isothermal process is that process in which the temperature (T) of the system remains constant though other variables (Pand V may change.

In an adiabatic process, the total heat content (Q) of the system remains constant though other variables (Pand T) may change In this process, $\square Q \square 0 \quad \frac{1}{2}$
(ii)A process in which volume (V) remains constant though other variables (P and T) may change, is called an isochoric process.

In this process, Cl$] 0$
An isobaric process is that for which pressure (P) of the system remains constant though other variables (V and T) may change. process, $\square P \square 0$
15. Since, $\quad \frac{V t}{V 0} \square \sqrt{\frac{T}{T_{0}}} \square \sqrt{\frac{273 \square t}{273 \square^{0}}}$

1
2 W here ${ }^{V t}, V$ are the velocities of sound at ${ }^{T}$ and T_{0} respectively.
\square

1 2

Neglecting the higher power

1
2

Thus, the velocity of sound increases by $61 \mathrm{~cm} / \mathrm{s}$ for every

1oCDor1oKDrise in the temperature.

16. Since work done $W_{\square} m g h$

J — $4.210 \mathrm{ergs} / \mathrm{cal}$

We know, heat energy $H \square \stackrel{W}{J}$ cal

$Q \square \frac{98}{420} \square^{0.23^{\circ} \mathrm{C}}$
17. Since $P V \square \quad R T$
$\begin{array}{ll}\text { We are given } V P 2 \square \text { costant } & 1 \\ 2\end{array}$
$\square \quad V \frac{\square}{R T} \square_{\square}^{2} \square$ constant

T^{2}	
$V^{\text {constant }}$	1

Using $\quad \frac{T 21}{V 1} \square \frac{T 2}{V} \quad 1$
$T 2 \square 2 V \square \stackrel{T 2}{V} \square 2 T 2$
${ }^{T 1} \square \sqrt{2 T}$
18. (i) The pulse does not have a definite wavelength or frequency but has a definite speed of propagation (in a non-dispersive medium).

1
(ii)The frequency of the note produced is not equal to 0.05 Hz , it is the frequency of pulse repetition.
19.
$\square \quad S \quad$ \& \quad M1LOT 2月
\square

- Bulk modulus $\frac{1}{\square^{M L 1 T}}$ 2

1
Now, $\quad S^{3} \square^{4} \square \square^{M 1 L O T} \overbrace{}^{3} \theta^{M 1 L T}]^{4}$
2

Thus, is not a dimensionless constant but a dimensional constant.
20.

(i) : Push

(ii) Pull

1
2

W is weight of the lawn roller. When pushed by applying a force Fat an angle $\square . F \cos$ Dmoves it forward while the apparent weight becomes WIFsin].
However, when pulled, the apparent weight becomesWIFsin \square.
Since the force of friction is directly proportional to normal reaction (equal to apparent weight of the roller), it is more when it is pushed than when is pulled.
Initial momentum of one of the balls (say A) $=0.05 \frac{1}{16}$
21.

$$
\begin{array}{ll}
00.3 \mathrm{kgms}{ }^{1} & 1 \\
0
\end{array}
$$

$\square\left[0.3 \mathrm{kgms}{ }^{1}\right.$.
1
2

Assuming the two balls A and B moving in opposite directions collide and rebound with the same speed.

IImpulse received by ball A = Total change of momentum for ball A

$$
0.3 \quad 0.3 \quad 0.6 \mathrm{~kg} \mathrm{~g}_{1} \mathrm{~s}
$$

Thus, an equal and opposite impulse will be received by the other ball B.
22. The coin will only revolve with the record if the maximum force due to friction is sufficient enough to balance the centripetal force.

Maximum force due to static force $\begin{array}{lll}\frac{m v 2}{r} m r & 2, & 1\end{array}$
or $\quad r \square \frac{\square g}{\square^{2}}$
Given: $\quad 0.15, \square \quad 33 \underset{3}{1} \underset{3}{1} \mathrm{v} / \mathrm{min}$
1
2

1
2

- $\quad r \quad \xrightarrow{0.15 \square 9.8}$
2020
$=180 \%$

Solving we get, $\mathrm{r}[0.120 \mathrm{~m} \square 12 \mathrm{~cm}$

Thus, the coin placed at 4 cm will revolve with the record.
2
23. Power $P_{\square} F v \quad \frac{1}{2}$

P2

P1
or $v d v \square_{m} d t \quad$ Z

Integrating both sides, we get, \quad z
$\frac{v^{2}}{2} \square \underset{t}{P} t \square$ constant
or v^{2}
1
i.e. $v \square t \sqrt{ }$
24. We know,

$\begin{array}{cc}\square & \square \\ \text { or } F d t & d P\end{array}$ 1 2

If the impact lasts for a 百mall time ${ }^{d t}$ and the momentum of the body changes fromP1toP2then,

$F d t_{P_{1}}^{\square} d P^{\square}{ }_{P 2}^{\square}{ }_{P 1}^{\square}$	2
or ${ }^{t} \square \square \square$	
$\square^{0} F d t^{2} P P_{1}$	

Fvaries with timeand does not remain constant.

LetFarbe the constant force during the impact, then

$$
{ }_{0}^{t} \stackrel{\square}{F} d ఫ^{b} \stackrel{\square}{F} a v d t \quad 1
$$

$\square_{F a v}^{\square_{0}^{t}} d t_{\square}^{\square^{\text {Favt }}}$
■ Fav■ $P_{2} \square P_{1}$
Thus, the impulse received during an impact is equal to the total change in momentum produced during the impact.
25. In case of the Earth, $G_{r_{2}}^{M e m} m g$

1
-
2
In case of the planet, $G_{\frac{M}{P}{ }_{r 2}^{m} . p} m g$ $\frac{1}{2}$

Dividing these two equations, we get,

1
2

$$
\begin{aligned}
& \begin{array}{ll}
\text { but } g_{P} \square 2 g_{e} & 1 \\
2
\end{array} \\
& \text { and } \begin{array}{ll}
r^{r P} \square \\
{ }_{2} & 1 \\
2
\end{array} \\
& \begin{array}{llll}
M P & 2 & 1 & 1
\end{array} \\
& M \square_{4} \square_{2} \quad 2
\end{aligned}
$$

Thus the ratio of the mass of the planet to the mass of the Earth is $1 / 2$.
26. The surface tension of water is more than that of oil. Therefore, when oil is powered over water, greater value of surface tension of water pulls the oil in all directions and as such it spreads on the water. On the other hand, when water is powered over oil, it does not spread over itbecause the surface tension of oil being less than that of water, it is not able to pull water over it.
27. (i) Hydrogen.

As 2gof hydrogen containsNmolecules, Ikgof hydrogen contains $\frac{N}{2} \square 1000 \square 500 N m o l e c u l e s$, whereN $\square 6.023 \square 1023$,In case ofN2,28gof nitrogen containsNmolecules.
Therefore, 1kgofnitrogen contains

(ii) Hydrogen

As $P \square_{3}^{1 M} c 2, P \quad c^{2}$
SinceMandVare the same in both the cases, $\mathrm{CH} \square \mathrm{CN}$,
Therefore, the pressure exerted by hydrogen is more than that by nitrogen.
(iii) $\frac{V{\underset{2}{2}}^{V N_{2}}}{\square} \sqrt{\frac{P N}{P H}} \square \sqrt{\frac{14}{T} \square^{3.74}}$

1
$\begin{array}{ll}V H_{2} & 3.74 V_{N 2}\end{array}$
28. The statement in the question is shown in the diagram.$\tan \square y^{\prime} x$

$\tan \square \square \stackrel{y}{M A} \square \frac{y}{R x}$
where ${ }^{R}$ is horizontal range.
$\square \tan \square \square \tan \square \square \frac{y}{x} \square \frac{y}{R^{\square}}$

$$
\begin{aligned}
& \square \frac{R \square^{x} x \square}{x R x \square} \\
& Y R \\
& \frac{Y R}{x[R}
\end{aligned}
$$

or $\tan \square \square \tan \square \square \frac{Y R}{x \mathbb{P} \quad x \quad \square}$	(i)	1
Again, $x \square \square \times \cos \square$	(ii)	2
	(iii)	2

From eq. (ii) and (iii)
$y_{\square} x \tan \square^{1} \square \frac{x g}{2 \pi 2 \cos 2 \square \tan \square} \quad \frac{1}{2}$
Putting $R \xrightarrow{\square} \underline{2 u 2 \sin \square \cos \square}$, we get
 1 z
 or $\frac{y}{x} \square \tan \frac{\square R}{\square R}$
(iv)
1
Putting (iv)and(i) we get, $\tan \square \tan \quad \square \frac{Y R}{x R \square x} \square$12 $\tan \tan \quad \square \tan \square$

OR
(a)When thepacket is dropped, it has a velocity of14ms $\square 1$ in the upward direction. Taking the upward direction as +ve and down ward direction as-ve.
We have

	v ¢D\#ms /	1
	$\begin{array}{llll}a & g & g\end{array} .8 \mathrm{mp}^{2}$	2
or	$98 \square^{14} \square t \frac{1}{2} \square^{9.8} \square^{2}$	
or	$4.9 t 2 \square 14 t \quad 98 \square 0$.	1
or	$49 t 2 \square 140 t \quad 980 \square 0$	
or	$7 t 2 \square 20 t \square 140 \square 0$	

or $\quad 7 t 2 \square 20 t \square 140 \square 0$
—

$\mathrm{B}^{20} \square \sqrt{\frac{400 \square^{3920}}{14}}$	1
$\frac{20 \square 65.73}{14} \square^{6.125}$	2

(Considering only the +ve sign
$v \quad t \quad v \quad 0 \quad a t$
$14 \quad 9.8 \quad 6.12$
1459.97
$45.97 \mathrm{~m} \mathrm{~s} /$
Thus, the final velocity of the body is along the downward direction.
(b)Both the graphs represent non-uniform motion. 1
29.
(i) Let there be a gas at constant pressurePand volume V. When the pressure increases from P to $P \square \square p$, the volume decreases fromVtoV
$1 V$.

Bulk modulus, $K \square \frac{V P}{V}$
When the gas is impressed isothermally, Boyle's law holds good, i.e.

$$
P V=\text { constant, }
$$

Differentiating w. r. t. V, we get

$$
\begin{aligned}
& P V \stackrel{d P}{d V} \square^{0} \\
& \text { or } \frac{d P}{\square V} P K \operatorname{Kis} 0 \\
& \square \frac{2}{V}
\end{aligned}
$$

Thus the isothermal elasticity of a gas is equal to its pressure.

$$
\begin{aligned}
& \text { When the gas is compressed adiabatically, }
\end{aligned}
$$

> Differentiating w. r. t. ${ }^{V}$,
> or $\quad \frac{d P}{d V} \square \frac{\square \mathrm{YP}}{\mathrm{V}}$
> or $\quad \frac{d P}{d V} \square \quad \square k_{a d i}$
> V

Thus, the adiabatic elasticity of a gas isytimes the pressure of the gas.

$$
\frac{K_{a d i}}{\text { Kiso }} \mathrm{y} \frac{\mathrm{P}}{P} \mathrm{P}
$$1

OR
At a given temperature, let the length of the brass rod beL1, and that of the steel rod beL2. If $L 2 \mathrm{CL} 1$, the difference between the
 Let the temperature be raised totoC.

पLength of the brass rod attoClL1DL101t.
Length of the steel rod attoCDL2DL2—2t
[HereD1and[2are the coefficients of brass and steel respectively.
Difference between the lengths of the rods attoC, say

$\left.\square L^{\prime} \mathrm{C} L 2 \mathbb{Z}\right] 2 t \square L 1 L \mathbb{L} 1 t$

The difference remains that same at all temperatures,
L ロ
orL2 ${ }^{2} 2 t \square L 11$
or

$$
\frac{L 2}{L 1} \square^{t} \frac{t}{1}
$$

Thus, the length of the rods must be inversely proportional to the linear coefficient of their materials.

1
30.

Let a body of manmbe dropped in a straight hole in the Earth of themMand radius R. The body will be attracted towards the center of the Earth with a force given by,

$$
\begin{equation*}
F \quad \frac{G M m}{R 2} \tag{1}
\end{equation*}
$$

But ${ }^{F} \quad m g$
] $m g \square \underset{R 2}{G M m}$ or $g \square \underset{R}{G M}$

Or
$\square \frac{4 G R}{3}$
(i)

1
where is mean density of the Earth.

When the body is dropped into the straight hole and it falls through thedepthd, the value of acceleration due to gravity at the point P is given by,

g^{\prime}| $\frac{G M^{\prime}}{R} d \quad 2$ | 1 |
| :--- | :--- |
| 2 | |

W here ${ }^{M}$＇is the mass of the sphere of radius $\left(R_{\square} d\right)$
$\square g^{\prime} \frac{4 \square \text { 日d प }}{R} \quad \begin{aligned} & 1 \\ & 2\end{aligned}$
Thus，$g^{\prime} / g \quad \frac{R^{\prime} R}{d_{R 2}}$
or $\quad g^{\prime} \frac{g^{\prime}}{R 2} \nabla_{\square} d$ or $g^{\prime} \square \square_{\square} \square d \square$
i．e．，acceleration（in magnitude）of the body is proportional to the displacement from the centre of the earth 0 ．Thus，the motion is
$S H M$ ．

Time period，

$$
\begin{aligned}
& T \text { 亿 } 2 \sqrt{\frac{\text { Displacement }}{\text { Acceleration }}} \\
& \square^{2} \sqrt{\frac{\square R \square d \square}{\frac{\square^{R} \square^{d} \square_{g}}{\square R}}} \quad \pi \sqrt{\frac{R}{g}}
\end{aligned}
$$

（i）The radar waves sent form the Earth strike the approaching aeroplane．Here the radar is a source which is stationary and the aeroplane is anobserver which is moving towards the stationary source．We have to determine the velocity to the approaching plane．

2
—

1
2
whereDis the velocity of the radar waves andvsis the velocity of the aero plane．

Now the aero plane receives waves of frequencyn＇and acts as a source moving towards stationary observer，i．e．radar on the Earth． Since on reflection，the frequency does not change，the aero plane will
— Apparent frequency received by the radar is given by,

[Using the binomial theorem as $\frac{v s}{v}$ प 1

Thus, velocity of an approaching aero plane is $\frac{n}{2 n} v$.
(ii)Substituting the values given in the above expression we have,

$$
v_{s} \frac{d^{500} \square 600}{2 \square 45000} \quad 10 \mathrm{~m} / \mathrm{s}
$$

$$
1
$$

Thus, the speed of thesubmarine is m / s.

$$
\begin{aligned}
& \text { 回 } 1 \underset{D_{2}}{2 v s} n \\
& \text { or } \quad \begin{array}{l}
n 1 \\
\square^{1} \square \frac{2 v s}{v}
\end{array} \\
& 2 v s \frac{\left({ }^{1} \square_{n)}\right.}{n} v \\
& 1 \\
& 2 \\
& v s \square \frac{\square n}{2 n} v
\end{aligned}
$$

