Physics Model Question Paper 2023 Class 11

Q. No

Marks

Ans1.Yes (example angle)
Ans2.Motion of a body thrown vertically/obliquely under constant g.
Ans3. -x-axis
Ans4. Work

Larger armmeanslarger
for winiclifequires less $\quad \stackrel{\square}{F}$
प. (1/2)
Ans6. 3

Ans7.

Ans8.No processis possible whose sole result is the absorption of heat from a reservoir and the conversion of all of this heat into work.(1)

Ans9.

Systematic Errors	RandomErrors
1.Errors in which the	Deviation from true value is
deviation from true value	irregular in size as well as sign. (1/2)
tends to have fixed size and (1/2)	
sign.	
2.They can be attributed to a	Irregular pattern does not allow

fixed cause and can be eliminated.	them to be attributed to any fixed cause and hence cannot be eliminated, only minimized.
$(1 / 2)$	

Q10.Two blocks of mass 3 kg and 2 kg are in contact with each other on a frictionless table.Find the force exerted by thesmaller block on bigger block if a force of 5 N is applied onthe bigger block.

Ans10.For 3kg

$F-F 32=m 3 a$
eq.(1)
(1/2)
For 2 kg

But from Newton's third law
DF 23 [F32

Therefore, puttingin (1), $\mathrm{F}-\mathrm{m} 2 \mathrm{a}=\mathrm{m} 3 \mathrm{a}$
$\mathrm{F}=(\mathrm{m} 2+\mathrm{m} 3) \mathrm{a}$
$\mathrm{Ca} 5 \mathrm{Cl} 1 \mathrm{~m} / \mathrm{s} 2$

5
Therefore, $\mathrm{F} 32=\mathrm{m} 2 \mathrm{a}=2.1=2 \mathrm{~N}$

OR
1.Friction adjusts itsdirectionto be alwaysopposite to applied force.
2.Friction adjusts itsmagnitudeupto a certain limit, to be equal to the applied force.

$$
\begin{equation*}
\mathrm{Fms}=\square \mathrm{sN}=\square \mathrm{smg} \mathrm{O} 0.2 \square 2 \square 10 \square 4 \mathrm{~N} \tag{1/2}
\end{equation*}
$$

Since, applied force $<$ Fms, the static friction acting $=\mathrm{fs}=2 \mathrm{~N}$.

Ans11. Since
p

Therefore, $\frac{\square p}{p} \quad \frac{\frac{11}{10} \mathrm{p} \mathrm{plp}^{\mathrm{p}}}{\square} \frac{}{10}$
Therefore, $\mathrm{Dp} \mathrm{D} 100 \mathrm{C10} \mathrm{\%}$

Ans12.

(1)

Ans13.Polar satellites-Their orbit is perpendicular to the orbit of geostationary satellites. These areusedfor communication purpose.Also, the height above the Earth's surface is lower. Negativesign of total energyindicates attractive nature of force between the satellite and the Earth.

Ans14.The stress required to fracture a material whether by compression, tension, or shearis called breaking stress. Yes,the wire is under stress asits own weight acts as load.

Ans15.For adiabatic expression $P V=$ const.
Therefore, $P V=P^{\prime} V^{\prime} \quad 1600 V 5 / 3 P^{\prime}(8 V) 5 / 325 P^{\prime} V 5 / 3$ or $P^{\prime} 1600 \mathrm{C}$

$$
\begin{align*}
& 32 \quad \text { प50P } \tag{1/2}\\
& \text { a }
\end{align*}
$$

Therefore, fall is pressure $=1600-500=1550 \mathrm{~Pa}$
Ans16.(i) For isothermal expansion $\square T=0$, hence $\square U=0$
(ii) For adiabatic expansion $\mathrm{UU}=\mathrm{DQ}-\mathrm{DW}=-\mathrm{DW}=-\mathrm{PDV}$ as $\mathrm{QQ}=0$.

Ans17.Astationary waveis a wave that remains in a constant position.
This phenomenon can occur because the medium is moving in the opposite direction to the wave, or it can arise in a stationary medium as a result of interference between two waves traveling in opposite directions.

Where A-Antinodes; N-Nodes
Ans18.
Damped oscillations are oscillations in which dissipative forces act as additional restoringforces to continuously decrease the amplitude of oscillation.

Forced oscillations are oscillations whose amplitude is maintained by an external periodicforce which compensates for the energy loss (n) cagmped oscillations.

Resonant oscillations are those forced oscillations in which the frequency of driver forcematches with the natural frequency of the s 5 ystem resulting in large increase in amplitude.

Ans19.

$$
\begin{aligned}
& \longrightarrow 10 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \square_{A} \square 36 \mathrm{~km} / \mathrm{h} \square \quad \frac{36 \square 1000}{60 \square 60} \mathrm{D10m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{align*}
& \square_{B A} \square \square_{B} \square \square_{A} \square 1501005 \mathrm{~m} / \mathrm{s} \tag{1/2}\\
& t_{A} \\
& \square 15 \square(\square 10) 25 \mathrm{~m} / \mathrm{s} \tag{1/2}\\
& \text { Time taken by } \mathrm{C} \text { to cover } 1 \mathrm{~km}=1000 \mathrm{C4} \mathbf{0 s} \tag{1/2}\\
& 25
\end{align*}
$$

To avoid accident B should cover 1 km is less than 40 s .
sDut 1_{z} at 2

2
[2000800a
$800 \mathrm{a}=1000-200=800$
$\mathrm{Da}=1 \mathrm{~m} / \mathrm{s} 2$

Ans20.a =-kx
$a \square \frac{\mathrm{dv}}{\mathrm{dx}} \square \mathrm{Hx}_{\mathrm{x}}$
$\square \mathrm{dv}$
\square kxdx
Integrating both sides,

u o
$\frac{1}{2}$ ((12 Du2) $\quad 10 \mathrm{Kkx}_{2}^{2}$

Therefore, loss in K.E. $=1 \mathrm{mkx} 2$

$$
2
$$

Ans21.(a) During free fall acceleration of thief $=\mathrm{g}=$ accelerationof load
So that load is unable to apply any force.
Let the force by load be N .
$\mathrm{mg}-\mathrm{NDN}=0=$ force applied by load on man

(b)Along horizontal direction, \mathbb{Z} Fext

 conserved.Before firing system is at rest.
Therefore, $0=m b \square b \square m g \square g$

Therefore, $\quad \mathrm{m} \square \square \underset{\mathrm{m}_{\mathrm{g}} \mathrm{b}}{\square}$
So, to conserve linear momentum, the gun recoils.
(c)The sand yields but the cemented floor doesn't.

Hence, the time taken by man to come to rest increases in case of sand.
Since, Cp ff , force on man is less.
Ans22.Moment of inertia depends on:

1. axis of rotation
2.distribution of mass about the axis
$\mathrm{L}=\mathrm{IC}, \mathrm{k}=1 \mathrm{II} 2_{2}^{2}$
$2 \mathrm{kD} \mathrm{I}_{\mathrm{D}} \frac{}{\square 2}$
Therefore, $\mathrm{L} \quad \frac{2 \mathrm{kD}}{\square 2} \cdot 2 \mathrm{k}[\bar{\square}$

$$
\square \frac{1}{4} \cdot \frac{2 \mathbb{K L}}{\square} \frac{1}{4}
$$

```
Ans23. \(\mathrm{Q} \square \frac{\mathrm{KA}\left(\mathrm{T}_{1} \mathrm{~T}\right) \mathrm{t}_{2}}{\mathrm{x}}\)
    \(A=\) area of 6 faces \(=6 \times(3 \times 10-1) 2=54 \times 10 \quad-3 \quad(1 / 2)\)
    \(\mathrm{mL}=\frac{K A(\mathrm{~T} \rho \mathrm{~T} 2) \mathrm{t}}{\mathrm{x}}\)
    or \(m \mathrm{KA}\left(\mathrm{T}_{1} \mathrm{~T}\right) \mathrm{t}_{2}\)
        xL
    \(\square \frac{0.01054010 \square 2(4500) \square 63600 \square}{501002 \square 335010^{3}}\)
\(=0.313 \mathrm{~kg}\)
Therefore, mass left \(=4-0.313=3.687 \mathrm{~kg}\)

Ans24.








\[
\begin{array}{cc}
\text { Ans25. (a) } \quad E \quad 2^{3 \square} \mathrm{NkT} 2^{3 \square} \mathrm{nRT} \\
& \square \frac{3}{2}(2)(8.31)(293) \\
& \square .310 \mathrm{~J}^{3} \tag{1.5}
\end{array}
\]
(b)Average kinetic energy per molecule
\[
\begin{align*}
& \square_{2}^{3}\left(1.3810 \quad \square_{23}\right)(292) \\
& \square  \tag{1.5}\\
& 6.0710 \quad{ }^{\square 21} \mathrm{~J}
\end{align*}
\]

OR
(a)Average speed
\(\begin{array}{ccc}\square 5.00 \square & 8.00 \square 12.00 \square 12.00 \square 14.00 \square 14.00 \square 17.00 & \square 20.00 \\ 9 & \end{array}\)
(1/2)
\[
\begin{equation*}
=12.70 \mathrm{~m} / \mathrm{s} \tag{1/2}
\end{equation*}
\]
(b)

\[
\begin{equation*}
=178 \mathrm{~m} 2 / \mathrm{s} 2 \tag{1/2}
\end{equation*}
\]

Therefore, \(\quad 2 \mathrm{rms}\) 国 \(178 \sqrt{ } 13.3 \mathrm{~m} / \mathrm{s}\)
(c)3 out of 9 have speed \(12 \mathrm{~m} / \mathrm{s}\), 2 have \(14 \mathrm{~m} / \mathrm{s}\) and the rest have different speeds.
So, most probable speed is \(12 \mathrm{~m} / \mathrm{s}\).

Ans26.(a) Frequency
(b)2Dcorresponds to path differencel.

Q here fore, \(\frac{3 D}{4}\) corresponds to path difference \(\quad \frac{3 \square}{2 \square} \quad \frac{3 \square \square}{8}\)
(c)Both waves should not have frequency difference greater than 16 Hz .

Ans27.

(1/2)
If the block is pulled to straight by distancex, restoring force in each spring is-kx.
Therefore, for block F = ma
\(\square-k x-k x=m d x \quad \frac{2}{d t 2}\)
ormdx[22kxD0
dt2
\(\frac{\operatorname{ord} 2 \times 2 \mathrm{k} \square}{\mathrm{dt} 2} \times \square 0\)
which is in form \(\frac{\mathrm{d}^{2} \times \square \square 2 \times \square 0}{\mathrm{dt} 2}\)
Hence the motion is SHM
\[
\begin{array}{r}
\text { also } T=\frac{2 \square}{\square} \square \frac{2 \square}{\sqrt{\frac{2 k}{m}}} \\
\square_{2} \square \sqrt{\frac{\mathrm{~m}}{2 \mathrm{k}}} \tag{1/2}
\end{array}
\]

Ans28.
\begin{tabular}{cc} 
& \multicolumn{1}{c}{\(\mathrm{x} \mathrm{\square t3}\)} \\
\(\square\) & \(\mathrm{x}=\mathrm{kt} 3\) \\
\(\square\) & \(\square \frac{\mathrm{dx}}{\mathrm{dt}}=3 \mathrm{kt} 2\) \\
\(\square\) & \(a \quad \frac{\mathrm{dv}}{\mathrm{dt}} \square 6 \mathrm{kt}\)
\end{tabular}

Therefore, acceleration is non-uniform (a
\(\square \mathrm{t})\)
(1)

Therefore, \(\quad \underset{t_{1}}{\mathrm{t}_{1}, ~ ㅁ ~} \frac{m}{\mathrm{t} 2}\)
Therefore, 1
Therefore, \(\frac{11}{\square} \frac{\square}{\square} \frac{\square t_{1}}{\square} \frac{\square \mathrm{t}}{\square_{\mathrm{m}}} 2 \square\)
Therefore, \(\quad \square_{2 \mathrm{~T}}^{\mathrm{T}}\left[\frac{\left(\mathrm{t}_{1} \square \mathrm{t}\right) \square \square}{\square \square \square} \square \frac{\square}{\square \square \square}\right.\)

OR
(a)(i) Both at same time since vertical motion of both are identical \(\square y=0, a y=g\) and \(S y=\) H
(ii)Second one \(\square \quad 21 \square \sqrt{2 g H}\) but \(\square 2 \square \sqrt{\mathrm{u} \square 2 \mathrm{gH}}\)
\[
\begin{equation*}
\text { (b)For max range } \square=45^{\circ} \text {. } \tag{1/2}
\end{equation*}
\]
\[
\begin{equation*}
\text { at highest point }=v=v x=u \cos 45^{\circ}=\quad \frac{u}{\sqrt{2}} \tag{1/2}
\end{equation*}
\]
\[
\begin{gather*}
\text { (c) } R \frac{u^{2} \sin 2 \quad}{g}  \tag{1/2}\\
\square^{\mathrm{n} \cdot \mathrm{u} \sin ^{2} \quad 2} \frac{2 \mathrm{~g}}{\mathrm{~g}} \mathrm{nH} \\
2 \sin \square \cos \square \frac{\operatorname{nsin}^{2} \square}{2}  \tag{1/2}\\
\frac{\sin }{\cos \square} \square \frac{4}{\mathrm{n}}  \tag{1/2}\\
\square \square \tan \square 1 \frac{4}{n}
\end{gather*}
\]

Ans29.(a) No,because action and reaction cannot act on the same body.
(b) No effect
(c)The sideways friction between the road and car tyres.
(d)The angle by which the outer edge of a curved road is raised overthe inner edge.
(e)Banking results in additional contribution to centripetal force by a component of normal reaction. So, the vehicles can negotiate a turn at a higher speed without skidding.
(a) Pulling
\(v\)


Pushing


In case of pushing, vertical component of applied force F adds to the weight, thusincreasing the friction \(\mathrm{Fr}=\mathrm{\square N}=\mathrm{T}(\mathrm{Fy}+\mathrm{W})(1 / 2)\)
But in case of pulling, vertical component of applied force reduces the downward force,
Thus decreasing the friction \(F=\square N=\square(W-F y)\)
(b)Because it changes sliding friction to rolling friction which is smaller.
(c)(i) Car tyres have grooves to increase the friction and hence
their grip on the road forperfect rolling.
(ii)To enable walking on slippery ice, sand is sprinkled to increase friction.

Ans30.


Magnus effect:If amoving ball is given a spin, the air layers at the top acquire highervelocity than those at the bottom. So, as per Bernoulli's theorem, pressure below the ballbecomes greater than that at the top. Due to net upward force, the ball follows a curved path.
Viscosityis a measure of theresistanceof afluidwhich is being deformed by eithershear stressorextensional stress.
Dimension: [ML-1T-1]
SI unit: Poiseulli/decapoise
Depends on: 1. Temperature
2.Nature of liquid

OR
Stokes' Law is written as,
\[
\mathrm{Fd}=6 \square \mathrm{Vd}
\]

WhereFdis the drag force of the fluid on a sphere,mis the fluid viscosity,Vis the velocity ofthe sphere relative to the fluid, andd is the diameter of the sphere.

Reason: The viscous drag Flicll , hence it increases as the body falls. At a certain instantthe weight gets neutralized by the buoyant force and the viscous drag. Hence, inabsence of any net force, the speed becomes constant.
Terminal speed dependson: 1. radius of the body
2.coefficient of viscosity of the fluid
3.density of body
4.density of fluid.

Positive terminal velocity ( \(+\square \mathrm{t}\) ): motion of parachute
Negative terminal velocity (-Dt):motion of air bubbles in water(1/2)```

