21819 Seat No. 3 Hours / 70 Marks (1) All Questions are Compulsory. Instructions – (2) Answer each next main Question on a new page. (3) Illustrate your answers with neat sketches wherever necessary. (4) Figures to the right indicate full marks. (5) Assume suitable data, if necessary. (6) Use of Non-programmable Electronic Pocket Calculator is permissible. (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall. Marks 1. 10 Attempt any FIVE of the following: a) Define active and passive transducers. b) List any four units of pressure. c) Define laminar and turbulent flow. d) List any two non-contact type level measurement methods.

- e) State any two advantages of ultrasonic flow meters.
- State seeback and peltier effect. f)
- g) What is Pt-100?

P.T.O.

12

- 2. Attempt any TH<u>REE of the following:</u>
 - a) State the selection criteria for transducers (any eight points).
 - b) Draw constructional details of C-types Bourdon tube and explain its working
 - c) What is piezo electric effect? Name two piezo electric materials.
 - d) Explain the process of calibration of pressure gauge by Dead Weight Tester.
- 3. Attempt any THREE of the following:

- a) Compare orifice plate with venturi tube with reference to:
 - (i) Working principle
 - (ii) Construction
 - (iii) Cost
 - (iv) Pressure loss
- b) Draw and explain block diagram of instrumentation system.
- c) Write one example of each type:
 - (i) Active transducer
 - (ii) Primary transducer.
 - (iii) Electrical transducer.
 - (iv) Digital transducer.
- d) Draw the following and write one application of each:
 - (i) Well type manometer
 - (ii) Bellows.

- 4. Attempt any THREE of the following:
 - a) Explain the principle of operation of Doppler type ultrasonic flow meter with a neat labeled sketch.
 - b) A capacitive type level sensor is to be used for measuring the level of water in the tank. With a neat labeled diagram. Explain the construction of this transducer. Also state the reason for change in capacitance with change in level of water.
 - c) Compare RTD and thermistor on the basis of:
 - (i) temperature coefficient
 - (ii) linearity
 - (iii) temperature
 - (iv) range and cost
 - d) State any two advantages and disadvantages of electromagnetic flow meter.
 - e) Suggest a suitable level transducer for following application:
 - (i) Level control of liquid, powders and fine grained solids within mining
 - (ii) Chemical processing and food industries
 - (iii) Tank level monitoring in chemical, water treatment
 - (iv) Oil level in transformer.

- a) Draw constructional diagram of LVDT. State its working principle. What is residual voltage, explain with neat diagram.
- b) Why Rotameter is called variable area flowmeter? Explain the working of rotameter with neat diagram. State its one advantage and one disadvantage.
- c) Explain the following troubles and related remedies in ultrasonic flow meter:
 - (i) Meter does not show reading
 - (ii) Meter show less value of flow measured.
 - (iii) Meter show high value of flow measured.
- 6. Attempt any TW<u>O of the following:</u>

- 12
- a) What is pyrometry? Explain working of optical pyrometer with neat diagram. State its one application.
- b) Convert 200°F into Celsius (°C) Kelvin (°K) and Rankine (°R).
- c) Compare between:
 - (i) Ultrasonic and Radar type level measurement (any three points)
 - (ii) U-tube and well type manometer (any three points)

Marks 12 SUMMER- 2019 Examinations

M<u>odel Answe</u>r

Page 1 of 23

Subject Code: 22420

Important suggestions to examiners:
1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1	Attempt any FIVE of the following 10 Marks
a)	Define active and passive transducers.
Ans:	1. Active Transducer: (1 M
	 These transducers do not need any external source of power for their
	operation. Therefore, they are also called as self-generating type transducers.
	• The active transducer are self-generating devices which operate under the
	energy conversion principle.
	2. Passive Transducer: (1
	• These transducers need external source of power for their operation. So they are
	not self-generating type transducers.
b)	List any four units of pressure.
Ans:	(Any four units expected: 1/2 marks each)
	The following are units of Pressure
	1. Pascals (Pa or N/m2)—N stands for <i>newton</i> which is SI unit of pressure
	2. Psi - Pounds per square inch (PSI)
	3. Bar – 105 Pascals
	4. mm Hg-millimeters of Mercury 1mm of Hg = 1 Torr

	SUMMER– 2019 Examinations	
Subject Code: 22420	M <u>odel Answ</u> er	Page 2 of 23
5. Torr – 133.	32 Pa	
6. cm H2O – 1	. cmH2O = 98.068 Pa	
c) Define laminar an	d turbulent flow.	
Ans: Laminar flow:		(1 Mark)
1. Laminar flov no disrupti	w occurs when the fluid flows in infinitesin on between them. For laminar flow Reyno OR	nal parallel layers with Ids number Re < 2300
2. The flow in each other	which fluid flows smoothly such that fluid	layers are parallel to
	OR	
3. No streamli flow.	nes intersect each other, such type of flow	v is known as laminar
	OR	
4. When all th flow.	ne molecules of flow are parallel to each o	ther, it is called Laminar
Turbulent flow: -		(1 Marl
1. Turbulent fl	ow occurs when the fluid does not flow in	parallel layers, the lateral
mixing is v	ery high, and there is a disruption betweer	n the layers. Re > 4000
	OR	
2. When all th Turbulent	e molecules of flow are scattered without flow.	fixed position it is called
	OR	
3. The flow in way that its	velocity changes irregularly, such type of flow	v is known as turbulent flow.
d) List any two non-c	contact type level measurement methods	S.
Ans:	(Any Two ty	/pes expected: 1 mark each)
The following	g are non-contact type level measureme	nt methods
1. Ultrasonic t	ype level measurement	
2. Nuclear rad	iation type level measurement	
3. Radar type	level measurement	
4. Capacitive l	evel transducer.	
5. Load cell ty	pe level transducer.	

		SUMMER– 2019 Examinations	
Subject	: Code: 22420	M <u>odel Answ</u> er	Page 3 of 23
e) S	itate any two advar	tages of ultrasonic flow meters.	
Ans:		(Any Two po	pints expected: 1 marks each)
	Advantages of ult	rasonic level measurement:	
	1. Offer no obstr	uction to the flow	
	2. o/p is insensit	ive to variation in viscosity, density and	d temperature
	3. No moving pa	rts	
	4. Linear relatior	nship between o/p and i/p	
	5. Used for bidir	ectional flow	
	6. Excellent dyna	amic response	
	7. Good accurac	y +-2%	
	8. o/p is electric	al	
	9. It is used as n	on-contact method of flow measurem	ent.
f)	State seeback and	peltier effect.	
Ans:	See beck Effect:-		
	When a pair of diss	similar metals are joined at one end, ar	nd there is a temperature
	difference betwee	n the joined ends and the open ends, t	hermal emf is generated,
	which can be mea	sured in the open ends.	
	Peltier Effect:		
	The Peltier effect i	s a temperature difference created by	applying a voltage between
	two electrodes co	nnected to a sample of semiconductor	material.
		OR	
	The Peltier effect:	Heat is given out or absorbed when an	electric current pass across
	a junction betweer	n two materials.	
g) V	Vhat is Pt-100?		
Ans: P	t-100:		(2 Marks)
	A platinum resistan	ce temperature detector (RTD) Pt100 i	is a device with a typical
	resistance of 100 0	at $O(C)$ (it is called $D(1)O(C)$)	

		SUMMER-2019	Examinations		
Subjec	ct Code: 22420	Model A	<u>Insw</u> er	Page 5 of 23	
	 4. Whose pressur out on accoun 5. This causes the 6. A pointer is mo indicates the p between the E due to the sha 7. Bourdon tubes 8. The materials u copper, and st 	e is to be measure t of the pressure. e movement of the unted on the shaft pressure. The posi Bourdon tube deve ft mounted spring normally measure used for Bourdon t	ed enters the tube, free end which is t. The needle move tion of the needle i loped torque actin that opposes its m gauge pressure. ubes are brass, ph	the tube tends to straighten measured. es over a circular scale that s determined by a balance g on the shaft and the torque novement. osphor bronze, beryllium	
c)	What is piezo electric	effect? Name tw	o piezo electric m	aterials.	
Ans:	Piezoelectric Effect: -			(2 M	lark
	When pressure or for an electric charge is	ce is applied on pigenerated across	ezoelectric crystal hat crystal. OR	s such as quartz crystal then	
	Piezoelectric Effect is response to applied r Piezoelectric Materi	s the ability of cert nechanical stress als: -	ain materials to ge (Any Two Mater	nerate an electric charge in ial expected: 1 marks each)	
	1. Barium Titanat	e.			
	2. Rochelle salts.				
	3. Quartz crystal.				
	4. Topaz				
	5. Tourmaline				
	6. lead titanate				
	7. lead zirconate	titanate			
	8. lithium sulphat	e			

Subjec	ct Code: 224	SUMMER– 2019 Examinations 20 M <u>odel Answ</u> er	Page 9 of 23
	4. Data	a Transmission Element:-	
	• If	the elements of the system are physically separated	, it is necessary to
		transmit the data from one stage to the other. So we	need this Data
		Transmission element	
	5. Data	a presentation Element:	
	• It	performs the translation function, such as present th	ne data in a suitable
		form so that it is easily understood by the observer a	nd for this the Data
		Presentation Element is used	
c)	Write one Electrical	e example of each type: (i) Active transducer (ii) F transducer. (iv) Digital transducer.	Primary transducer. (iii)
Ans:			(Each Point: 1 Mark)
	(i)	Active transducer:-Thermocouple, piezoelectric, ph	otovoltaic cell
	(ii)	Primary transducer:- Bourdon tube, bellows,	
	(iii)	Electrical transducer.:- LVDT,RVDT, Hall effect, stra	ain gauge, ultrasonic
		meter, optical pyrometer, radiation pyrometer	
	(IV)	Digital transducer:- Linear Encoder, digital taco gen	erator
d)	Draw the fo	ollowing and write one application of each: (i) Well	type manometer(ii)
Ans:	i) Well typ	e manometer:	(1 Mar
	δh ‡ Υ or equ	ivalent figure	

Subjec	ct Code: 2242	20 20	MER– 2019 Examinations M <u>odel Answe</u> r	Page 13 of 23	
	Construc	tion & working:-			
	• Fig.	shows a capacitan	ce type liquid level indic	cator. It consist of an insulated	
	сара	acitance probe (wh	nich is a metal electrode) firmly fixed near and parallel to	
	the	metal wall of the ta	ank.		
	• If th	e liquid in the tank	is non-conductive , the	capacitance probe and the tank	
	wall	form the plates of	a parallel plate capacito	or and liquid in between them	
	acts	as the dielectric.			
	• If the	liquid is conductiv	ve the capacitance prob	e and liquid form the plates of	
	the	capacitor and the i	nsulation of the probe a	cts as the dielectric.	
	• A capa	acitance measurin	e device is connected wi	th the probe and the tank wall.	
	wh	ich is calibrated in	torms of the lovel of the	liquid in the tank	
	VVII				
	 When the level of liquid in the tank rises, the capacitance increases. 				
	• When liquid level of the tank decreases, the capacitance also decreases.				
	Chang	e in the capacitan	ce is measured and is di	splayed on the indicator	
	calit	prated in terms of I	iquid level		
	Compare F	TD and thermisto	or on the basis of: (i) to		
c) Ans:			ים בוות המשבח הוות הוו הוות הוו הוות הו	nperature coefficient (ii) linear	
	(iii) tempe	rature (iv) range a	and cost	mperature coefficient (ii) linear (Each Point: 1 Mark)	
	(iii) tempe Sr.No.	rature (iv) range a Points	RTD	mperature coefficient (ii) linear (Each Point: 1 Mark) Thermistor	
	Sr.No.	rature (iv) range a Points temperature	RTD Positive temperature	mperature coefficient (ii) linear (Each Point: 1 Mark Thermistor PTC and NTC both types are	
	(iii) tempe Sr.No.	rature (iv) range a Points temperature coefficient	RTD Positive temperature coefficient of resistance.	nperature coefficient (ii) linear (Each Point: 1 Mark) Thermistor PTC and NTC both types are available	
	(iii) tempe Sr.No. 1 2	rature (iv) range a Points temperature coefficient linearity	RTD Positive temperature coefficient of resistance. It has linear	mperature coefficient (ii) linear (Each Point: 1 Mark) Thermistor PTC and NTC both types are available It has nonlinear temperature	
	(iii) tempe Sr.No. 1 2	rature (iv) range a Points temperature coefficient linearity	RTD Positive temperature coefficient of resistance. It has linear temperature versus resistance curve.	mperature coefficient (ii) linear (Each Point: 1 Mark) Thermistor PTC and NTC both types are available It has nonlinear temperature versus resistance curve.	
	(iii) tempe Sr.No. 1 2 3	rature (iv) range a Points temperature coefficient linearity temperature	RTD Positive temperature coefficient of resistance. It has linear temperature versus resistance curve. Used in medium to	mperature coefficient (ii) linear (Each Point: 1 Mark) Thermistor PTC and NTC both types are available It has nonlinear temperature versus resistance curve. Used in low to medium Tamperature versus resistance curve.	
	(iii) tempe Sr.No. 1 2 3	rature (iv) range a Points temperature coefficient linearity temperature	RTD Positive temperature coefficient of resistance. It has linear temperature versus resistance curve. Used in medium to high Temperature range: -100 C to 650 C	mperature coefficient (ii) linear (Each Point: 1 Mark) Thermistor PTC and NTC both types are available It has nonlinear temperature versus resistance curve. Used in low to medium Temperature range: -50 C to 300	
	(iii) tempe Sr.No. 1 2 3 4	rature (iv) range a Points temperature coefficient linearity temperature range and cost	RTD Positive temperature coefficient of resistance. It has linear temperature versus resistance curve. Used in medium to high Temperature range: -100 C to 650 C. Temperature range: -	mperature coefficient (ii) linear(Each Point: 1 Mark)ThermistorPTC and NTC both types are availableIt has nonlinear temperature versus resistance curve.Used in low to medium Temperature range: -50 C to 300Temperature range: -50 C to 300	
	(iii) tempe Sr.No. 1 2 3 4	rature (iv) range a Points temperature coefficient linearity temperature range and cost	RTD Positive temperature coefficient of resistance. It has linear temperature versus resistance curve. Used in medium to high Temperature range: -100 C to 650 C. Temperature range: - 100 C to 650 C.	mperature coefficient (ii) linear(Each Point: 1 Mark)ThermistorPTC and NTC both types are availableIt has nonlinear temperature versus resistance curve.Used in low to medium Temperature range: -50 C to 300 CTemperature range: -50 C to 300 CThey are cheaper as compared to	

Subjec	SUMMER– 2019 Examinations ect Code: 22420 M <u>odel Answe</u> r	Page 14 of 23
d)	State any two advantages and disadvantages of electromagnetic flow	<i>w</i> meter.
Ans:	Advantages of Magnetic Flowmeter:	(2 Marks)
	 It can handle slurries and greasy materials. It can handle corrosive fluids. It has very low pressure drop. It is totally obstruction less. It is available in large pipe sizes and capacity as well as in seve materials. It is capable of handling low and very high-volume flow It can be used as bidirectional meter. 	er construction
	Disadvantage of Magnetic Flowmeter:	(2 Marks)
	 It is relatively expensive. It works only with fluids which are adequate electrical conductor It is relatively heavy, especially in larger sizes. It must be full at all times. It must be explosion proof when installed in hazardous electrica Suggest a suitable level transducer for following application:	rs. I areas
e)	(i) Level control of liquid, powders and fine grained solids within mi (ii) Chemical processing and food industries (iii) Tank level monitor water treatment (iv) Oil level in transformer.	ining ing in chemical,
Ans:	(Eacl	n Point: 1 Mark)
	i. Level control of liquid, powders and fine grained solids within min	ing:-
	Capacitive Transducer, Radar level (microwave) Transducer, laser be	eam type
	ii. Chemical processing and food industries:-	
	Capacitive Transducer, Radar level meter	
	iii. Tank level monitoring in chemical, water treatment:-	
	Ultrasonic level transducer, load cell type	
	iv. Oil level in transformer: - sight Glass , optical sensor (LDR), Float type level transducer	

Subject	Code: 224	SUMMER– 2019 Examinations 120 M <u>odel Answ</u> er	Page 18 of 23
	 The by by Inc Decr The flow 	e float reaches a stable position in the tube the flowing fluid(i.e <i>S</i> + <i>A</i>) equals the downw the weight of the float. crease in the flow rate causes the float to ris ease in the flow rate causes the float come e float gives reading on a calibrated scale w w rate can be determined by direct observa	when the upward force exerted vard gravitational force exerted se higher in the tube down to the lower level which is on glass tube and the stion of the metering tube
	Advanta 1. We 2. The 3. Cos 4. Eas 5. We 6. No e	ges: - (Any Two advantages are expected can find the rate of flow by direct visual. re is a low-pressure loss in it. t of this equipment is less. y in construction. can work on it directly, without any sample external power or fuel for its operation	I) flows.
c) (Disadvar 1. Thi 2. Low 3. Rec 4. Sub 5. The 6. Ero 7. Car 8. Ope Explain the i) Meter de	ntages: - (Any Two disadvantages are exposed on the second secon	es in ultrasonic flow meter: value of flow measured.
Ans: i)	(iii) Meter Meter do	r show high value of flow measured. es not show reading	(2 Marks)
	S.No.	POSSIBLE CAUSES➤ Scaling of inner wall of the pipe so	CORRECTIVE ACTION OR REMEDIES > Required regular
	2	that signal does not reach in proper direction Scaling causes attenuation and refraction of the signal In case of doppler type instrument	maintenances of meter ➤ Perform calibration ➤ Requires minimum % of
		Does not work with pure liquids.	solids or bubbles (~5%)

SUMMER-2019 Examinations

Subjec	ct Code: 224	120	M <u>odel Answ</u> er	Page 19 of 23
	ii) Meter	shows less value	of flow measured:	
	MSuike) C	ORBESTEVE GAUGE	\$ OR	
	REMEDIE 1	S > Les measuremer	nt if the Flow has	Flow material required less
	2 → If the pulsations		2 more than 10% solids/bubbles 2 ➤ If the pulsations are large, the	than 10% solid/bubbles >> One possible way to reduce pulsations is by using a
		flow meter. In t displayed on the smaller than the	d flow range of the his situation, the flow e flow meter is e actual flow	damper such as an accumulator
	iii) Meter POSSIB > Dopp tend over Air faste	shows high value o BLE CAUSES ler meters will to track bubbles solids bubbles will rise er than the slurry	f flow measured CORRECTIVE ACTION Check minimum % Check minimum parts Perform calibration is +/- 5% unless calibration	(2 Ma of solids (~5%) article size (~ >100 um) and check if Accuracy orated on the pipe
.6	Attempt	any TWO of the follo	owing	12 Marks
a)	What is p its one ap	oyrometry? Explain oplication.	working of optical py	rometer with neat diagram. Stat
Ans:	(Pyrometry Mark) Pyrometry • When p very h therm body.	y: - 1 Mark, Figure: 2 r y: - hysical contact with igh temperature, Pyr al radiation. Radiatic	Marks & Explanation : the medium to be mea cometers are used. Ope on pyrometry measures	2 Marks, One Application: - 1 asured is not possible due to eration of pyrometer is based on s the radiant heat emitted by hot

ject Code:	22420 SUMMER	R– 2019 Examinations <u>1odel Answe</u> r	Page 22 of 23
		K=366.483	
3 6	Rankine temperature scal	ے	(2 N
0.1	(°D) Deletion bet		(= ·
		R = F + 459.69	
		°R =200 + 459.69	
		°R = 659.69	
		OR	
	Relation between	°R & °K is given by,	
		°R = ()	
		°R = () $\frac{9}{5}$ 366.483	
		Ũ	
°R = 6	59.669		
°R = 6	59.669 are between: (i) Ultrason	ic and Radar type level me	easurement (any three
°R = 6 Compa points	59.669 are between: (i) Ultrason) (ii) U-tube and well typ	ic and Radar type level me e manometer (any three p	easurement (any three oints)
°R = 6 Compa points s: (i) Ultra	59.669 are between: (i) Ultrason) (ii) U-tube and well typ sonic and Radar type lev	ic and Radar type level me e manometer (any three p el measurement: - (Any Three points	easurement (any three oints) s expected: 1 mark each)
°R = 6 Compa points 5: (i) Ultra Sr.No	59.669 are between: (i) Ultrason) (ii) U-tube and well typ sonic and Radar type lev o. Points	ic and Radar type level me e manometer (any three p el measurement: - (Any Three points Ultrasonic level	easurement (any three oints) s <mark>expected: 1 mark each)</mark> Radar level
°R = 6 Compa points s: (i) Ultra Sr.No	59.669 are between: (i) Ultrason) (ii) U-tube and well typ sonic and Radar type lev p. Points	ic and Radar type level me e manometer (any three p el measurement: - (Any Three points Ultrasonic level measurement	easurement (any three oints) s expected: 1 mark each) Radar level measurement
°R = 6 c) Compa points 5: (i) Ultra Sr.No 1	59.669 are between: (i) Ultrason) (ii) U-tube and well typ sonic and Radar type lev p. Points Measurement principle	ic and Radar type level me e manometer (any three po el measurement: - (Any Three points Ultrasonic level measurement Sound waves	easurement (any three oints) s expected: 1 mark each) Radar level measurement High-frequency radar impulses or electromagnetic waves
°R = 6! c) Compare points 5: (i) Ultra Sr.No 1 2	59.669 are between: (i) Ultrason) (ii) U-tube and well typ sonic and Radar type lev b. Points Measurement principle Accuracy	ic and Radar type level me e manometer (any three points el measurement: - (Any Three points Ultrasonic level measurement Sound waves Low accuracy	easurement (any three oints) s expected: 1 mark each) Radar level measurement High-frequency radar impulses or electromagnetic waves High accuracy
°R = 69 c) Compa points 5: (i) Ultra 1 2 3	59.669 are between: (i) Ultrason) (ii) U-tube and well typ sonic and Radar type lev b. Points Measurement principle Accuracy Operating limits	ic and Radar type level me e manometer (any three pe el measurement: - (Any Three points Ultrasonic level measurement e Sound waves Low accuracy Limited pressure and temperature limits	easurement (any three oints) s expected: 1 mark each) Radar level measurement High-frequency radar impulses or electromagnetic waves High accuracy Extreme temperature and pressure does not effect device
°R = 6 c) Compa points s: (i) Ultra 1 2 3 4	59.669 are between: (i) Ultrason) (ii) U-tube and well typ sonic and Radar type lev . Points Measurement principle Accuracy Operating limits Environmental Condition	ic and Radar type level me e manometer (any three points el measurement: - (Any Three points Ultrasonic level measurement Sound waves Low accuracy Limited pressure and temperature limits Effect measurement performance	Pastingeasurement (any three oints)expected: 1 mark each)Radar level measurementHigh-frequency radar impulses or electromagnetic wavesHigh accuracyExtreme temperature and pressure does not effect device performanceNot effected

reflection or echo

received

High cost

6

Cost

conditions

Moderate cost

SUMMER-2019 Examinations

Subject Code: 22420

M<u>odel Answe</u>r

Page 23 of 23

Sr.No.	U-tube manometer	well type manometer
12	Both leg having same cross section	Both leg having different cross
	area	section area
2	Transmitting fluid h Manometric fluid	Applied Pressure Well WELL Type Manometer
3	on either side.	on other side.
4	Pressure drop is indicated by difference	There is negligible change in the leve
	between heights of both tubes.	of fluid in well because of large cross
	Difference in heidhte in measured	

-----END------END------

11	.920			
3	Hours / 7	'0 Marks	Seat No.	
Instructions – (1) All Questio		(1) All Questions	are Compulsory.	
		(2) Answer each	next main Question on a ne	ew page.
		(3) Illustrate your necessary.	answers with neat sketche	s wherever
		(4) Figures to the	e right indicate full marks.	
		(5) Mobile Phone Communicat Examination	e, Pager and any other Elec ion devices are not permiss Hall.	tronic sible in
				Marks
1.	Attempt a	ny FI <u>VE of</u> the foll	owing:	10
	a) State nec	essity of instrumer	nt calliberation.	
	b) Give class	sification of transd	ucer on any two factors	
	c) List any tw	vo specifications o	f electrical pressure transd	ucer.
	d) Define At	mospheric pressur	e and Absolute pressure.	
	e) Define lar	ninar flow and turb	oulent flow.	
	f) Give cla	ssification of level	measurement methods.	
	g) Convert 4	5°C into Farhenite	3.	
2.	Attempt a	ny TH <u>REE of t</u> he f	ollowing:	12
	a) Draw sym for it.	bol and character	istic of LDR. Give material (lsed
	b) Compare working	Bellows and diaph principle and appli	nragm w.r.to construction, s ication.	ensitivity,
	c) Draw and	explain Doppler ty	/pe flow measurement.	
	d) Explain ca	alliberation of capa	acitive type level measurem	ent.

- 3. Attempt any TH<u>REE of the following:</u>
 - a) Give one application each of following transducer.
 - (i) LVDT
 - (ii) RVDT
 - (iii) Capacitive
 - (iv) Piezoelectric
 - b) Compare U tube manometer and well type manometer on any four points.
 - c) Compare Nuclear Radiation type and Ultrasonic level measurement.
 - d) Draw and explain filled system thermometer.
- 4. Attempt any TH<u>REE of the following:</u> 12
 - a) List any two advantages and two applications of Bellows.
 - b) State Seeback effect and Petlier effect.
 - c) List any two advantages and applications of RADAR type level measurement.
 - d) Name the material used and the sensitivity of following thermocouple type.
 - **(j**)
 - (i)
 - (iii) R
 - (iv) S
 - e) Explain with neat labelled diagram measurement of flow using venturimeter.

- a) Draw neat sketch of Rotameter and explain its working principle.
- b) Draw optical type pyrometer and list its advantages.
- c) State function of strain gauge. Give its types and explain working of any one type of it.

6. Attempt any TWO of the following:

a) Draw and explain the construction and working of Dead Weight Tester.

b) List any two direct methods of level measurement. Explain Hydrostatic method of level measurement. Give one advantage and one disadvantage of it.

- c) Related to ultrasonic flow meter:
 - (i) Give any two types of it.
 - (ii) Write any two specifications.
 - (iii) Write two advantages over rotameter.

Marks

	WINTER- 2019 Examinations	
Subject Code: 22420	M <u>odel Answ</u> er	

Page 1 of 26

Important suggestions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)

4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1	Attempt any FIVE of the following 10 Marks			
a)	State necessity of instrument calibration.			
Ans:	(Any Two points expected: 1 Mark each			
	Necessity of instrument calibration: -			
	To ensure reading from an instrument are consistent with other			
	measurements.			
	To determine the accuracy of the instrument reading.			
	To establish the reliability of the instrument i.e. it can be trusted.			
	\succ Determining the precision, deviation, and reliability of the measurements,			
	which is important for manufacturers as part of design qualification.			
	instrument Calibration Keeps Processes Safe			
	Calibration Maintains Certification			
	Reduce Costs from Manufacturing Errors			
b)	Give classification of transducer on any two factors			
Ans:	(Any Two points expected: 1 Mark each			
	The transducers can be classified as: -			
	1. Active and passive transducers.			
	2. Analog and digital transducers.			
1				

	WINTER- 2019 Examination	ons
Subject Code: 22420	M <u>odel Answ</u> er	Page 2 of 26
3. On the	basis of transduction principle used	d.
4. Primary	/ and secondary transducer	
5. Transde	ucers and inverse transducers	
c) List any two sp	ecifications of electrical pressure	transducer.
Ans:	A)	ny Two points expected: 1Mark each)
Specifications	of electrical pressure transducer:	-
1. Root Sum S	quares (RSS)	
2. Non-Lineari	ty	
3. Hysteresis		
4. Non-Repeat	ability	
5. Long-Term	Stability	
6. Zero Offset		
7. Span Offset		
8. Thermal Eff	ects	
9 Sizo		
	l circuit	
	reneun	
12. Sell-gener	aled of external power source	
13. Miscellane	ous	
d) Define Atmospl	neric pressure and Absolute press	sure.
	pressure (Darometric Pressure).	(+'
It is def	ined as pressure exerted by the air	surrounding to the earth i.e
P_Atmos	spheric=P_Absolute -P_Gauge	
➢ Absolute pre	ssure	
It is defined as	s total pressure including atmosph	eric pressure acting on a surface area
P_Absol	ute=P_Atmospheric+P_Gauge	
e) Define laminar	flow and turbulent flow.	
Ans: Laminar flow: -		(1 N
1. Laminar	flow occurs when the fluid flows in	infinitesimal parallel layers with
no disru	ption between them. For laminar fl OR	low Reynolds number Re < 2300
2. The flow	in which fluid flows smoothly such	that fluid layers are parallel to
each otl	her	· · · · · · ·
	OR	

Subje	WINTER– 2019 Examinations ct Code: 22420 M <u>odel Answ</u> er Page 3 of 26 3. No streamlines intersect each other, such type of flow is known as laminar	1
	flow. OR 4. When all the molecules of flow are parallel to each other, it is called Laminar flow.	
	Turbulent flow:	(1 Mark
	I. Turbulent flow occurs when the fluid does not flow in parallel layers, the lateral	
	mixing is very high, and there is a disruption between the layers. Re > 4000	
	OP	
	II. When all the molecules of flow are scattered without fixed position it is called Turbulent flow.	
	OR	
	thet its velocity shorter investigation and the state of flow is known as turbulant flow.	
	cive election of level measurement methods	
Ans:	give classification of level measurement methods.	
	Classification of Liquid Level Measurement:	
	➢ Direct method	(1Ma
	1. Hook type	
	2. Sight glass type	
	3. Float type	
	4. Dip stick	
	≻Indirect method	(1Ma
	1. Hydrostatic pressure type	
	2. Electrical type:	
	a) Canacitance level indicator	
	b) Radiation level detector	
	c) Illtrasonic level deude	
	2 Padar type	
	s. Rauai type	

WINTER- 2019 Examinations

Subject Code: 22420

M<u>odel Answe</u>r

Page 5 of 26

(Each Point: 1 Mark)

Material used for LDR
1. Light Dependent Resistor (LDR) is made from a piece of exposed
semiconductor material such as cadmium sulphide.
2. Materials used as the semiconductor substrate include, lead sulphide (PbS),
lead selenide (PbSe), indium antimonide (InSb) which detect light in the
Compare Bellows and diaphragm w.r.to construction, sensitivity, working principle
and application.

Sr.	Points	Bellows	diaphragm
No	1.		
	construction	Bellows	Diaphragm
2	sensitivity	Less sensitive as compared	More sensitive as
		to diaphragm	compared to diaphragm
•	working	When there is no pressure C	hange in pressure
3	principle	applied to the bellows there is no any movement of th wall elements, as soor	causes change in e dimension of diaphragm, n as which is transmitted to
ns:		pressure is applied inside the bellows there is expansion on the wall bellows	the rotary pointer through an mechanical linkage. The of pointer gives the reading proportional to applied
4.	Application	 I. These are used in the I. Dilarge indicating gauges, recorders where space is not a problem. ii. It is useful in pneumatic controllers. iii. low pressure gauges are suitable for chemical, II. petrochemical, plant construction, and cleanrooms 	aphragm pressure gauges are used for relative pressure as well as for vacuum, compound and differential pressure applications. For corrosive gases and liquids

Subjec	ct Code: 22420	WINTER– 2019 Examinations M <u>odel Answ</u> er	Page 7 of 26
	Solids, but	bles or any discontinuity in liquid will refl	ect back to the receiver
	Because of the ve	elocity of the liquid their frequency, there	will be a frequency shift at
	the receiver end v	which is protentional to the velocity	
d)	Explain calibration	n of capacitive type level measurement.	
Ans:	> Calibrat	ion of conscitution type lovel transmitte	(Explanation: 4 Marks)
		the level transmitter from the evet transmitter	
	1. Remove	the level transmitter from the system(lar	IK).
	2. Check w	nether transmitter shows zero reading by	connecting with
		eter otherwise release the pressure.	
	i <u>j tne tra</u>	Insmitter is smart	
	1. connect	control circuit to the level transmitter	
	2. multime	ter to ma.	
	3. Fill the c	corresponding liquid in correct density and	1 note down the readings.
	Fill liquid a	t 25%, 50%, 75% and 100% in both asce	ending and descending
	orders and	note down the readings.	
	4. check fo	r errors if there is zero and span adjust sh	ould be done.
	5. for zero	calibration: drain the liquid and check the	multimeter if it is not 0
	then gc	to sensor trim option in the HART then g	o to zero trim and the
	HART c	ommunicator will automatically trim the	sensor in to zero
	6. For spar	a calibration: fill 100% and wait for some	time then go to sensor trim
	and sel	ect span trim in HART communicator the	475 will automatically trim
	the sen	sor into 20ma.	
	7. After do	ing zero and span trimming again check tl	ne reading at
	0%,259	%,50%,75% and 100%.	
	≻ I <u>n case</u>	of non-smart capacitance type transmitte	<u>er</u>
	1. Connect	a multimeter and rotate the zero pot and	stop when multimeter
	shows	4ma.	
	2. Fill the c	hamber to maximum liquid level and rota	ite the span screw to
	20ma.		

Subjec	t Code: 22420	WINTER– 2019 Examinations M <u>odel Answ</u> er	Page 8 of 26
	3. Repeat t	nese steps and check all readings	
Q.3	Attempt any THR	EE of the following	12 Marks
a)	Give one applicat Capacitive (iv) Pi	ion each of following transducer: (i) L ezoelectric	VDT (ii) RVDT (iii)
Ans:		(One application each of fo	llowing transducer: -1 mark)
	i) LVDT		
	≻LVDT used to	o measure force	
	►LVDT used to	o measure strain	
	►LVDT used to	o measure weight	
	≻LVDT used to	o measure tension	
	≻LVDT used to	o measure pressure	
	➢ The LVDT ca	n be used for displacement measureme	ent ranging from fraction of
	mm to few	cm.	
	➤ Testing of sc	oil strength	
	➢ PILL making	Machine	
	≻ "Brain Probi	ng" medical device	
	≻ Robotic Clea	ner	
	≻ Dollar bill th	ickness in ATM Machine.	
	➢ Hydraulic cy	linder Displacement	
	➢ temperature	transducers,	
	➢ valve contro	l,	
	➢ servo valve o	displacement sensing	
	ii) RVDT		
	≻ Hydraulic pu	Imp control	
	➢ Valve positio	n	
	➢ Rotary actua	tor feedback	
	➢Arm position	1	
	≫ Throttle leve	er position feedback	
	≫Reeler / Dere	eeler	

Subject Code: 22420	WINTER– 2019 Examinations M <u>odel Answe</u> r	Page 9 of 26
≻ Fuel Valves as	well as Hydraulic	
🎽 Modern machir	ne tools	
🎾 Controls Fuel		
Brake with cab	le systems	
Engines bleed a	air-systems	
> Robotics		
iii) Capacitive		
➤ The capacitive to	ransducers are used to measure humic	dity in gases.
\succ It is used to mea	asure volume, liquid level, density etc.	
\succ It is used for me	asurement of linear and angular displa	acement.
➤ Capacitive display	acement sensors are used for distance	e measurement
≻ Other typical ap	plications are tolerance testing in mas	s production,
≻ Vibration measu	irement,	
≻ Strain measurer	nent,	
➢ Thickness meas	urement and thickness control of thin	metal foils,
➢ Thickness meas	urement of plastic foils during product	tion,
➢ beveling and be	nding of wafers in semiconductor prod	luction and many more.
(iv) Piezoelectric		
≻ Piezoelectric tra	nsducers are used in high frequency a	ccelerometer.
➢ Piezoelectric ma	aterials are used in industrial cleansing	gapparatus.
\succ It is used in und	er water detection system i.e. SONAR.	
➤ These are used	in measurement of surface roughness	in accelerometers and
vibration picks	ups.	
\succ It is used in ultra	asonic flow meters, non-destructive te	est (NDT) equipment's
➢ Piezoelectric ma	aterials are used in ultrasonic transduc	cers.

WINTER- 2019 Examinations

Subject	t Code: 22	420 Model Answe		Page 10 of 26
b) (Compare	U tube manometer and well type n	anometer on any fou	ır points.
Ans: U	J-tube an	d well type manometer (any three	oints)	
		(An	Four points expect	ed: 1 mark each)
	Sr.No.	U-tube manometer	well type mano	ometer
	1	Both legs are having same cross	Both legs are ha	wing different
		section area	cross section ar	ea
		P1 Transmitting fluid Manometric fluid	Applied Pressure	Scale Scale
	3	There are two tubes of equal cross se	tion There is a well on	one side and a tube
		on either side.	on other side.	
	4	between heights of both tubes.	e I here is negligibl of fluid in well be section area	e change in the level cause of large cross
	5	Difference in heights in measured.	Single height is m	neasured.
c) (Compare	Nuclear Radiation type and Ultras	nic level measureme	ent.
Ans:			Any Four points exp	ected: 1 mark each
	Sr. No	Nuclear Radiation	ltrasonic level	
	1	Can be installed in highly	annot be installed in h	ighly hazardous
		hazardous areas	reas	
		They can measure level in	ignal will be absorbed	by foam, dust, mist,
	2.	applications involving mist, foams and intense vapors too	umidity	
		Can be used with agitated liquids		
	3	High cost of installation	annot be used with ag	itated liquids
			ow cost of installation	as compare with
	л		uclear radiation	
	4 E	Boguiros liconcing by a regulatory	oes not required licen	sing by a regulatory
		agency	gency	

		WINTER- 2019 Examinations		
Subje	ct Code: 22420	M <u>odel Answ</u> er	Page 13 of 26	
Q.4	Attempt any THRE	E of the following	12 Marks	
Ans:	List any two advant	ages and two applications of Bellows.	•	
	Advantages:	(Any Two	points expected: 1 mark each)	1
	1. It is used	o measure absolute & differential pres	sure.	
	2. It is used	o measure low or medium pressure rar	ng.	
	3. Bellow joi	nts do not require access; i.e. They can	be direct buried, however a	
	telltale is	recommended		
	4. No mainte	nance is required.		
	5. Low cost			
	Applications:	(Any Two	points expected: 1 mark each)	
	1. These are	used in the large indicating gauges, rec	corders where space is not a	
	problem.			
	2. It is usefu	in pneumatic controllers.		
	3. low press	ire gauges are suitable for chemical, pe	etrochemical, plant	
	construct	ion, and cleanrooms		
b)	State Seeback effe	ct and Petlier effect.		
Ans:	See back Effect:		(2	Ma
	When a pair of dis	similar metals are joined at one end (ju	nction, J1) , and there is a	
	temperature diffe	ence between the joined ends and the	open ends (junction , J2),	
	thermo-emf is ger	erated, which can be measured in the	open ends (J2 or cold	
	junction).			
	Peltier Effect:			Ма
	The Peltier effect	s a temperature difference created by	applying a voltage between	
	two dis-similar me	atals connected to a sample of semicon	nductor material.	
		OR		

Subject Code: 22420		2420	WINTER– 2019 Examinations M <u>odel Answ</u> er	Page 14 of	26
	The F acros	Peltier effect: He	at is given out or absorbed when ween two materials.	an electric current pas	SS
c) I Ans:	 List any two advantages and applications of RADAR type level measurement. Advantages:				
d)	8. Ice cream "Premix" mixer 9. Storage tanks for toxic liquids Name the material used and the sensitivity of following thermocouple type: (i) J (ii)				(i) J (ii)
Ans:	(for each thermocouple Material: - 1/2 mark) for each thermocouple Sensitivity: -1/2 mark				mark & 2 mark)
	Sr No '	Thermocouple type	Materials used	Sensitivity μV/0 C	
	1.	J	Iron/Constantan	45 – 57	
	2.	К	Chromel/Alumel	40 – 55	
	3.	R	Platinum/Platinu m 13% Rhodium	5 – 12	
	4.	S	Platinum/Platinu m 10% Rhodium	5-12	

Subjec	ct Code: 22420	WINTER– 2019 Examinations M <u>odel Answ</u> er	Page 18 of 26
	6) The tempe	rature is measured without contacting t	he heated body.
	7) Fast resp	onse.	
	8) High outp	ut signal and moderate cost.	
c)	State function of stra it.	ain gauge. Give its types and explain w	vorking of any one type of
— AIIS.	(Function: -	2 Marks, Types of Strain Gauge: -2 Ma Diagram: - 1 Marl	rks, any one strain Gauge ks, Explanation: -1Marks)
	Function of strain gauge The strain gauge mechanical elo This change in r sectional area A Strain gauge i converts force, p resistance which	uge: - e is a passive, resistive transducer whicl ongation and compression into a resistan esistance takes place due to variation ir of the gauge wire, when an external forc OR s a sensor whose resistance varies with pressure, tension, weight, etc., into a cha n can then be measured	h converts the nce change. h length and cross- ce act on it. applied force; It ange in electrical
	Types of strain gaug The type of strain gau Wire gauge 1. Bonded st 2. Unbonded 3. Foil type s	e: - Ige are as train gauge I strain gauge strain gauge	
	 1. Bonded Resistar STRAIN is defin This change in r sectional area When a strain p decrease. Two main parar The change in le A resistance win is cemented to The wire is cover any mechanica 	ed as change in length divided by origina ed as change in length divided by origina esistance takes place due to variation in of the gauge wire, when an external force roduced by a force is applied on the wire neters are changes auge resistances ength re strain gauge consist of a grid of fine re carrier which may be a thin sheet of pa ered on top with a thin sheet of material of damage.	al length n length and cross- ce act on it. es, L increase and A esistance wire. The grid per Bakelite or Teflon. so as to prevent it from

Subject Code: 22420	WINTER– 2019 Examinations M <u>odel Answe</u> r	Page 22 of 26	
Construction:-			
Deadweight Tester	(DWT) is used for calibration of pressure	e gauges . A dead weight	
tester is an instrum	ent that calibrates pressure by determir	ning the weight of force	
divided by the area	eight tester consists of a base		
screw press/regulator, piston/cylinder assembly , A fluid (oil) that transmits th			
pressure and a mas	s set of weights.		
	PRESSURE = FORCE/AREA = W//	A	
As the area of a	piston of DWT is accurately Known so t	of DWT is accurately Known so that it is constant	
	Therefore PRESSURE(P) \propto FORCE ('	Weight)	
Working:-			
1. Connect t	he pressure gauge to the test port on th	e dead weight tester as	
shown in	the diagram above.		
2. Ensure the	at the test gauge is reading zero, if not c	correct the zero error and	
ensure that the gauge is reading zero before proceeding with t exercise.		ceeding with the calibration	
3. Select a weight (Kg) and place it on the vertical piston		ston	
4. Turn the h	andle of the adjusting piston or screw p	oump to ensure that the	
weight a	nd piston are supported freely by oil.	•	
5. Spin the v	ertical piston and ensure that it is floati	ng freelv	
6. At steady	state condition record the gauge readin	g and weight	
7. increasing	yweights until the full range or maximur	n pressure is applied to	
the gauge	e and then decreasing weights until the	gauge reads zero pressure.	
Calculate the acceptable a	e error at each gauge reading and ensur ccuracy limits.	re that it is within the	
b) List any two direct level measuremen Ans: (Direct methods of lo	: methods of level measurement. Exp t. Give one advantage and one disadva evel measurement: -2 Marks, Diagram	lain Hydrostatic method of antage of it. <mark>1: -1 Mark , Explanation: -</mark>	
1Mark, any one ad Mark)	vantages expected: 1 Mark, any one d	lisadvantages expected: 1	

	WINTER– 2019 Examinations	
ect Code: 22420	M <u>odel Answ</u> er	Page 24 of 26
Explanation: -		
≻ It is consisting	g of a hollow tube which is inserted in the li	quid of the tank.
≻ Two connectio	on are made with the bubbler tube one to t	he pressure gauge and
another to the regulated air supply, calibrated in terms of liquid level.		
≻A bubbler is co	onnected in the series with air supply line v	vhich simply as a
visual check	to the flow of the supply of the air.	
≻A level record	er may be connected with the pressure gau	uge to keep continues
record of liqu	id level as shown in fig.	
≻ When there is	no liquid in the tank or the liquid in the tan	k is below the bottom
end of the bu	bbler tube and the pressure gauge indicate	es zero.
➢ In other words atmosphere.	s, if there is no back pressure because the a	air escapes to the
≻As the liquid le	evel in the tank increases, the air flow is res	stricted by the depth
of liquid and	the air pressure acting against liquid head	appears as back
pressure to t	ne pressure gauge.	
≻ This back pres	sure causes the pointer to move on a scale	e, calibrated in terms
≻ The full range	of head pressure can be registered as leve	l by keeping the air
pressure fed the tube.	to the tube the range of the device is deter	mined by the length
≻Because air is	continuously bubbling from the bottom of	the tube, the tank
liquid does n	ot enter the bubbler tube and hence the tu	be is said to be purgi
≻ The common J	ourging fluid is air, but, if air reacts with the	e tank fluid or is
absorbed, dif	ferent gases are chosen depending on the	liquid properties.
Advantage: -		
1. The purge gas (compressed air) provides complete isolati	on from the measure
liquid.		

Subject Code: 22420	WINTER– 2019 Examinations M <u>odel Answ</u> er	Page 25 of 26
2. Minimum Mainte	enance	
3. The instrument p	panel can be located up to several hunc	lred feet from what is
being measured	d.	
4. They are very co	st effective.	
5. It is most suitab	le for measuring the corrosive or abrasi	ve liquid.
6. Design and cons	truction are very simple.	
7. Pressure gauge	can be placed above or below the tank l	level and can be kept as
far away as 50	ft (12.7m) from the tank with the help o	of piping
Disadvantage: -		
1. Their calibration	gets changed according to variations in	product density.
2. Require compres	sed air.	
Related to ultrason	nic flow meter: (i) Give any two type	es of it. (ii) Write any two
c) Ans: specifications. (iii) V	Vrite two advantages over rotameter.	•
(i) Two types of ultra	asonic flow mater:	
Transit time flo	w meters (time differences)	(2
≻ Doppler type.	, , ,	
(ii) Write any two spe	cifications:(Any two Specification	ns expected: 1 Mark each)
1. Accuracy		
2. Linearity		
Repeatability		
4. Weight		
5. Mounting Type		
6. End Fittings		
7. Media Tempera	ature	
8. Velocity Flow R	late	
9. Gas Volumetric	; Flow Rate	
10. Liquid Volume	etric Flow Rate	
11. Operating Ter	nperature	
12. Operating Pre	ssure	
13. Electrical Out	put	
(iii) Advantages over	rotameter: (Any Two advantage	es expected: 1 Mark Marks
1 Thoy have no m	poving parts	es expected. I Mark Marks
2 Ucod for both a	ioving parts.	
	una anu inquiu ievei measurement.	
J. It is a non-dist	ution to the flow	
4. Uffer no obstru	ction to the flow	

WINTER-2019 Examinations

Subje	ct Code: 22420	M <u>odel Answ</u> er	Page 26 of 26
	5. o/p is insensitive 6. Linear relationsh 7. Used for bidirect 8. Excellent dynam 9. Good accuracy + 10. o/p is electrica	e to variation in viscosity, density a hip between o/p and i/p tional flow hic response 2% l	nd temperature

-----END------END------