SUMMER-19 EXAMINATION

Subject Name: Digital technique

Model Answer

_Subject Code:

22320

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.		Ar	nswers		Marking Scheme
1	(A)	Attempt any FIVE of th	e following:			10- Total Marks
	(a)	List the binary,octal an	- <u>2M</u>			
	Ans:					2 M
		DECIMAL	BINARY	OCTAL	HEXADECIMAL	
		0	0000	0	0	
		1	0001	1	1	
		2	0010	2	2	
		3	0011	3	3	
		4	0100	4	4	
		5	0101	5	5	
		6	0110	6	6	
		7	0111	7	7	
		8	1000	10	8	

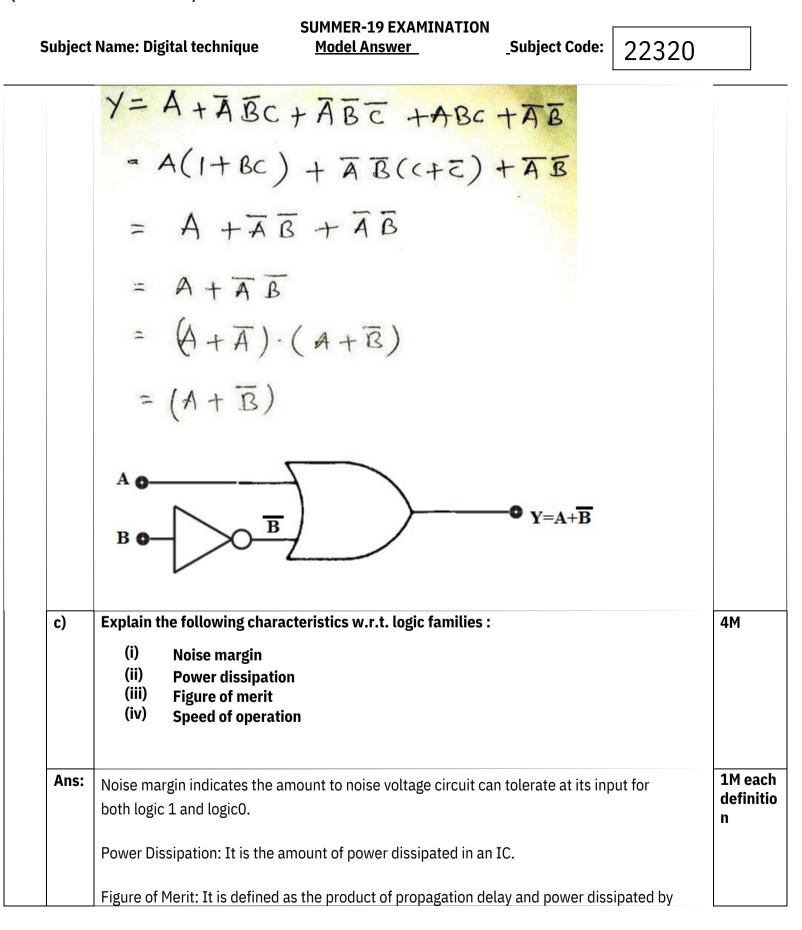
ubject	t Name: Digital technique	SUMMER-19 EX Model Answe		ubject Code:	22320	
	9	1001	11	9		
	10	1010	12	A		
	11	1011	13	В		
	12	1100	14	С		
	13	1101	15	D		
	14	1110	16	E		
	15	1111	17	F		
(b)	Define fan-in and fan-ou	t of a gate.				2M
Ans:	Fan-in is a term that define can accept. Most transister some have more than two	or-transistor logic (T o. A typical logic gate	FL) gates have one has a fan-in of 1 or	e or two inputs, 2.	although	1M
	Fan-out is a term that def single logic gate can feed other digital gates.				•	1M
(c)	Compare between synch	ronous and asynchr	onous counter (an	ny two points).		2M
(C)	Compare between synch	ronous and asynchr	onous counter (an	ıy two points).		

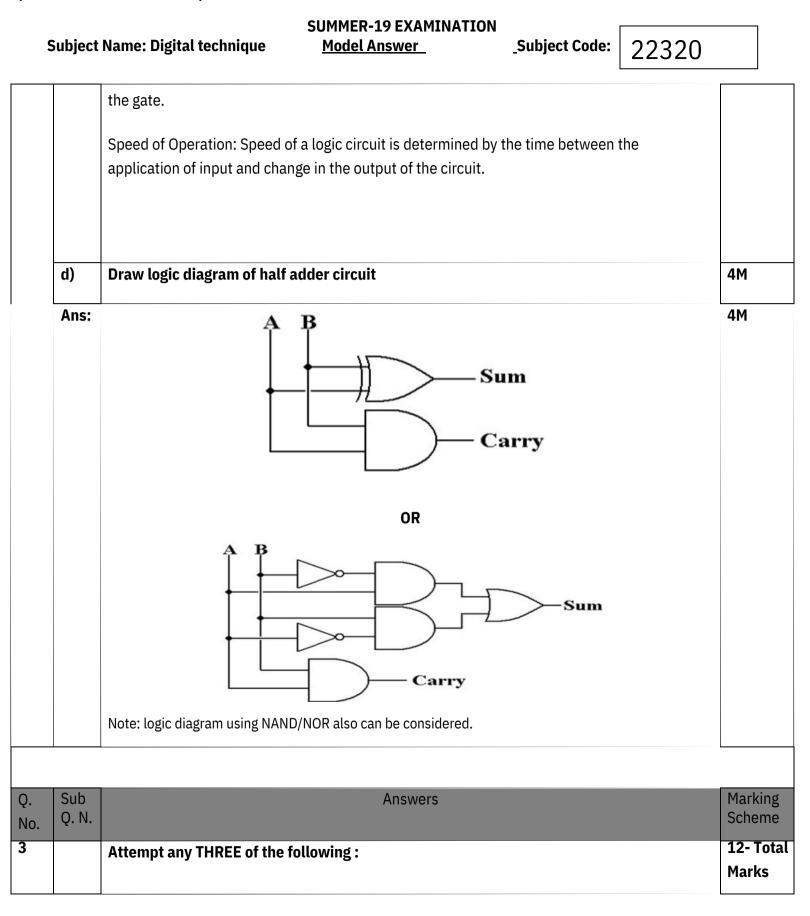
Ans:

Synchronous Counter	Asynchronous Counter	Any two
All flip flops are triggered with same clock.	Different clock is applied to different flip flops.	1M for eacl compar
It is faster.	It is lower	son
Design is complex.	I Design is relatively easy.	
Decoding errors not present.	Decoding errors present.	
Any required sequence can be designed	Only fixed sequence can be designed.	

SUMMER-19 EXAMINATION

Subject Name: Digital technique

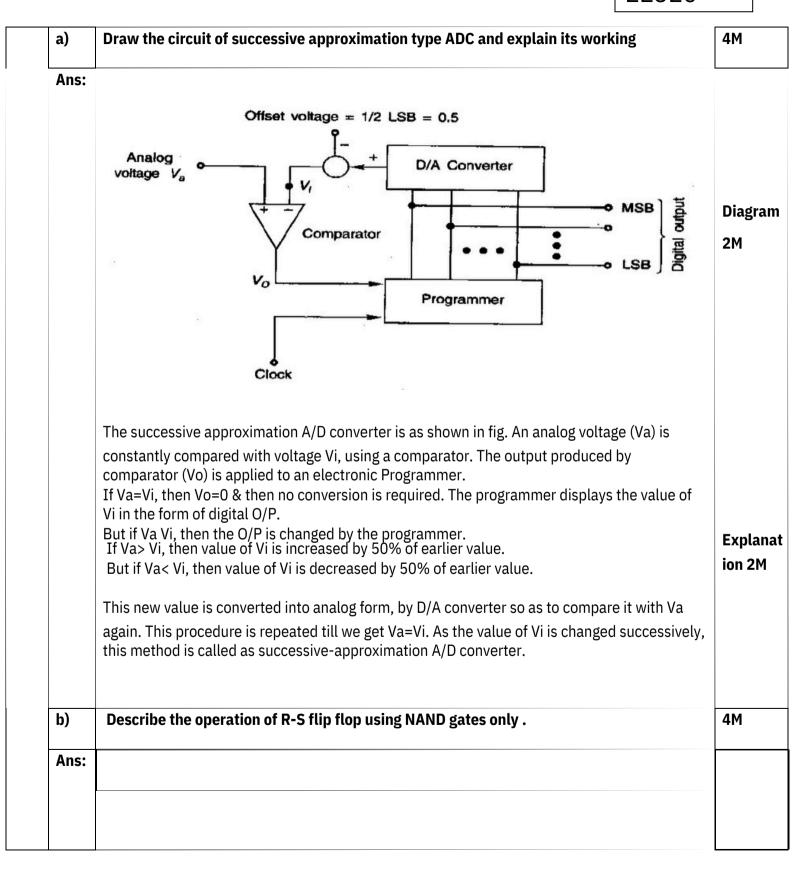

Model Answer

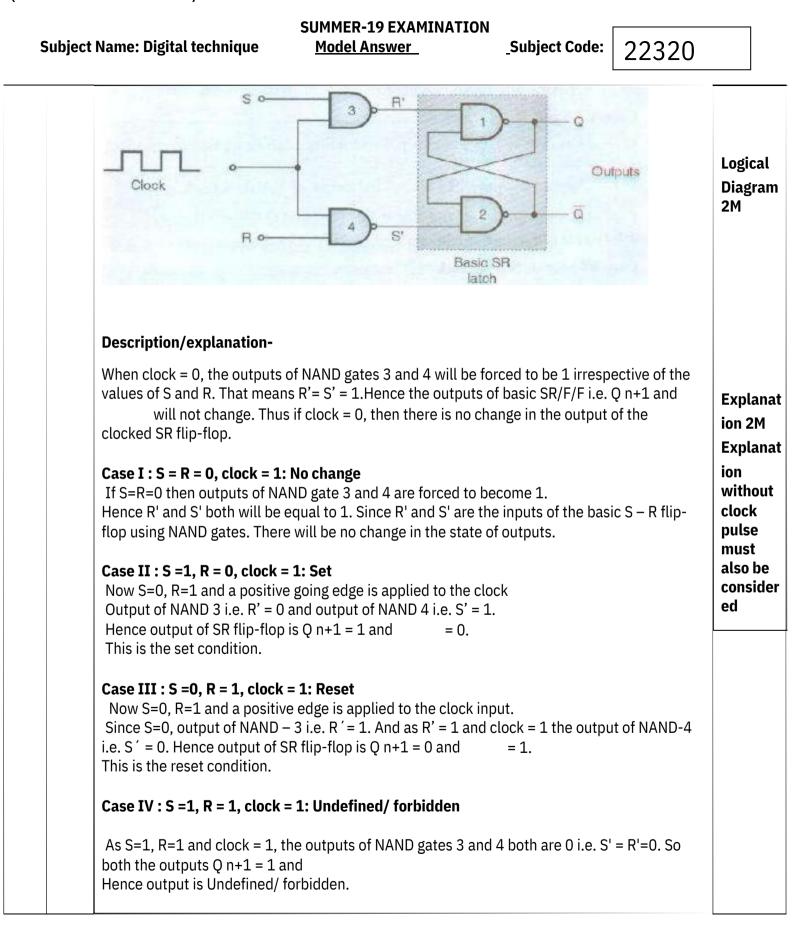

_Subject Code:

(d)	State two specification of DAC.	2M
Ans:	1.Resolution:	Any
	Resolution is defined as the ratio of change in analog output voltage resulting from a change of 1 LSB at the digital input VFS is defined as the full scale analog output voltage i.e. the analog output voltage when all the digital input with all digits 1. Resolution = VFS /(2n −1)	two, 1M fc each
	 2. Accuracy: Accuracy indicates how close the analog output voltage is to its theoretical value. It indicates the deviation of actual output from the theoretical value. Accuracy depends on the accuracy of the resistors used in the ladder, and the precision of the reference voltage used. Accuracy is always specified in terms of percentage of the full scale output that means maximum output voltage 3. Linearity: 	
	The relation between the digital input and analog output should be linear. However practically it is not so due to the error in the values of resistors used for the resistive networks. 4. Temperature sensitivity:	
	The analog output voltage of D to A converter should not change due to changes in temperature.	
	But practically the output is a function of temperature. It is so because the resistance values and OPAMP parameters change with changes in temperature. 5. Settling time:	
	The time required to settle the analog output within the final value, after the change in digital input is called as settling time. The settling time should be as short as possible.	
	6. Long term drift Long term drift are mainly due to resistor and semiconductor aging and can affect all the characteristics.	
	Characteristics mainly affected are linearity, speed etc. 7. Supply rejection	
	Supply rejection indicates the ability of DAC to maintain scale, linearity and other important characteristics when the supply voltage is varied. Supply rejection is usually specified as percentage of full scale change at or near full scale	
	voltage at 250e 8. Speed:	
	It is defined as the time needed to perform a conversion from digital to analog. It is also defined as the number of conversions that can be performed per second.	

iubject	Name: Digital technique	SUMMER-19 EXAMINATION Model Answer	_Subject Code:	22320	
e)	Write the gray code to giv	ven no.(1101)2 =(?) Gray.			2M
Ans:	1 EX-OR	EX-OR EX-OR	Binary Co	ode	2M
	1 0 (1101)2 = (1011) Gray	1 1	Gray Co		
f)	Define encoder, write the	IC number of IC used asdecima	I l to BCD encoder.		2M
Ans:		Fircuit that converts information fr f standardization, speed or compr C- 74147		ode to	Definat on-1M IC-1M
g)	Draw the logical symbol o	ofEX-OR and EX-NOR gate.			2M
Ans:	EX-OR GATE:-	A Thoout	$A \cdot \overline{B} + \overline{A} \cdot B$ $B + \overline{A} \cdot \overline{B}$		EX-OR 1M EX-NO 1M
Sub Q. N.		Answers			Markin, Schem
	Attempt any THREE of the	e following:			12- To Marks

ubject	SUMMER-19 EXAMINATION Name: Digital technique Model Answer _Subject Code: 2232	0									
a)	Convert:	4M									
	(i) (AD92.BCA)16= (?)10 = (?)8 = (?)2										
Ans:	(AD92.BCA)16	1.5M									
	= (10 × 16 ³) + (13 × 16 ²) + (9 × 16 ¹) + (2 × 16 ⁰) + (11 × 16 ⁻¹) + (12 × 16 ⁻²) + (10 × 16 ⁻³)										
	= 40960 + 3328 + 144 + 2 + 0.6857 + 0.046875 + 0.00244										
	= (44434.7368)10	1M									
	(AD92.BCA)16 =(1010 1101 1001 0010.1011 1100 1010)2	1.51									
	(AD92.BCA)16 = (1010 1101 1001 0010.1011 1100 1010)2										
	=(001 010 110 110 010 010.101 111 001 010)2										
	=(126622.5712)8										
	Note: any other method can be considered.										
b)	Simplify the following and realize it	4M									
	Y = A + C + + ABC+										
Ans:	Y = A + C + + ABC+	4M									




SUMMER-19 EXAMINATION

Model Answer

_Subject Code:

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION Subject Code: 22320 **Subject Name: Digital technique** Model Answer CLK **INPUTS OUTPUTS** REMARK S Qn+1 R Х Х No change 0 Qn No change Qn 0 1 0 0 Reset 1 1 1? 1 0 1 0 Set 1 0 Forbidden 1 ? 1 1 Give classification of memory and compare RAM and ROM (any four points) c) 4M classification of memory Classific Ans: ation MEMORY 2M Consider even if PRIMARY-SECONDARY Seconda HDD ry FDD memory DVD is not RAM ROM Pendrive written -PROM -EPROM -EEPROM SRAM DRAM **Comparison between RAM and ROM** RAM RAM 1. Temporary Storage. 1.Permanent Storage. 2 .Store data in MBs. 2.Store data in GBs. 3. Volatile . 3.Non-Volatile

SUMMER-19 EXAMINATION Model Answer

Subject Name: Digital technique

_Subject Code: 22320

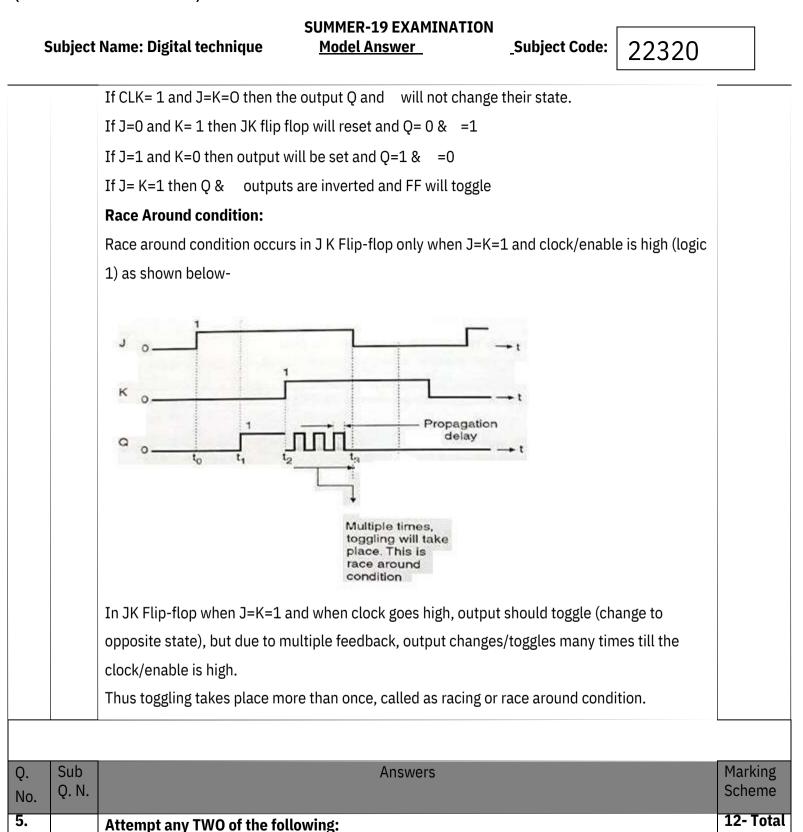
		4. Writing data is Faster.	4.Writing data is Slower.	
				Compari
				son 2M 4M
	d)	State the applications of shift register.		
	Ans:	1] Shift register is used as Parallel to serial co	nverter, which converts the parallel data into	Each
		serial data. It is utilized at the transmitter section block.	ion after Analog to Digital Converter (ADC)	Applicati on 1M
		2] Shift register is used as Serial to parallel co parallel data. It is utilized at the receiver section block.		Any other relevant applicati
		3] Shift register along with some additional gat ones. Hence, it is used as sequence generator 4] Shift registers are also used as sequence . Th		on must b e consider
		4] Shift registers are also used as counters . Th type of output from right most D flip-flop is cor counter and Johnson Ring counter.		ed
Q. No.	Sub Q. N.	Ans	wers	Marking Scheme
4		Attempt any THREE of the following :		12- Total Marks
	(a)	Subtract the given number using 2's complin	nent method:	4M
		(i) (11011)2 – (11100)2 (ii) (1010)2 - (101)2		
	Ans:	i) Subtract (11011)2 – (11100)2 Using 2	's complement binary arithmetic.	
		Solution:		
		(11011) – (11100)		
		Now,		
		2's complement of (11100)2= 1's complement	t of (11100)2 +1	2's
		1's complement of (11100)2 = (00011)2		comple ment

ubjec	t Name: Digital technic	que) EX swei	AMINAT: <u>r_</u>	ION _Subject Code:	22320	
	2's complement = 00	011+	-1 =	001	00						1M
	Therefore,			1	1	0	1	1			
				0	0	1	0	0			
				1	1	1	1	1			
	There is no carry it in	dicate	es tł	nat re	esult	s is ı	nega	tive and	in 2's complement forr	n i.e.(11111). 2	
	Therefore, for getting						_		-		
	1's complement + 1										Final
	= 00000 + 1										Answe
	Ans= (00001) ₂										1M
	Ans: (11011)2 – (111	.00)2	= 2	's co	mple	eme	nt of	(1111 <u>4</u>)	= (-1 <u>1</u>)		
	ii) Subtract ((1010))2 -	· (10	1)2u	sing	2's	complen	nent binary arithmetic	C.	
	2's complement of (101)	2 = 3	1's c	omp	leme	ent o	of (0101)	2 +1		
	1's complement of (0	101)	2 =	(101	0)2						
	2's complement = 10	10+1	L = 1	.011							2's
	Therefore,		1	0	1	0					comple
			1	0	1	1					ment
		1	-	U	-	-					1M
		<u> </u>	•								
		1	0	1	0	1					
	There is carry ignore i	it, wh	hich	indic	ates	that	resi	ults is po	sitive i.e.(+5)		
	= (0101)2	(- -	• >	, _·							Final
	Ans: (1010) ₂ - (101) = ₂	<u>010</u>	1)=	(±5)	10						Answei
											1M
)	Stare De-Morgan's t	heor	em a	and r	orov	e an	V ON	ρ			4M
•)	Stare De Piolgan 5 li			anu þ	100	c an	y 011				

Ans:	Name: D	_		-		del Answ	<u>'er</u>	_Subje	ect Code:	22320	Statem		
AII3.	It states that the compliment of sum is equal to the product of the compliment of individual variables.												
		$(\overline{A+B})$	$\overline{B}) = \overline{A}$	\overline{B}									
	Proof:										Anyono proof -		
		Α	в	Ā	\overline{B}	A+B	$(\overline{A+i})$	<u></u> 3)	$\overline{A} \ \overline{B}$		2M		
		0	0	1	1	0	1		1				
		0	1	1	0	1	0		0				
		1	0	0	1	1	0		0				
		_			0	1	0		0				
	De Morg It states individu (\overline{AB}) :	1 jan 's : that that that that that that that that	he com ables.		:		ual to the sur	n of the co	mpliments o	f			
	It states individu	1 jan 's : that that that that that that that that	2nd Th he com ables.	eorem	:		ual to the sur	n of the co	mpliments o	of			
	It states individu (\overline{AB}) :	1 jan 's : that that that that that that that that	2nd Th he com ables.	eorem	:		ual to the sur	m of the co (\overline{AB})	mpliments o $\overline{\overline{A} + \overline{B}}$	of			
	It states individu (\overline{AB}) :	1 jan 's : that that that that that that that that	2nd Th he com ables. - B A	nplimen	t of proc	luct is equ	A.B	(\overline{AB})	$\overline{A} + \overline{B}$	of			
	It states individu (\overline{AB}) :	1 jan 's : that that that that that that that that	2nd Th he com ables. - B	nplimen	t of proc	luct is equ				of			
	It states individu (\overline{AB}) :	1 jan 's : that that that that that that that that	2nd Th he com ables. - \overline{B}	plimen B	t of proc	luct is equ B 1	A.B 0	(<u>AB</u>) 1	$\overline{A} + \overline{B}$	of			

SUMMER-19 EXAMINATION

Model Answer

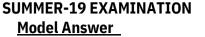

_Subject Code:

Ans:	PLA	PAL	Any four
	1) Both AND and OR arrays are	1) OR array is fixed and AND array is	4 points 1M each
	programmable	programmable.	
	2) Costliest and complex than PAL	2) Cheaper and simpler	
	 AND array can be programmed to get desired minterms. 	 AND array can be programmed to get desired minterm. 	
	4) Large number of functions can be implemented.	4) Provides the limited number of functions.	
	5) Provides more programming flexibility.	5) Offers less flexibility, but more likely used.	
(d)	Reduce the following expression using K-ma F(A,B,C,D) = M (1,3,5,7,8,10,14)	p and implement it	4M
Ans:	AB 00 01	11 10	Kmap- 1M
		0 3 2 (A+D)	Pairs- 1.5M Final
	01 4 5	0 7 6	Ans- 1.5M
	1 1 12 13	15 0 14 (A+ C+D)	
	10 8 9	11 0 10 .	
		(A+B+D)	
	$F(A,B,C,D)=(A+\overline{D})(\overline{A}+\overline{C}+D)(\overline{A}+\overline{C})$	8+D)	

SUMMER-19 EXAMINATION Model Answer

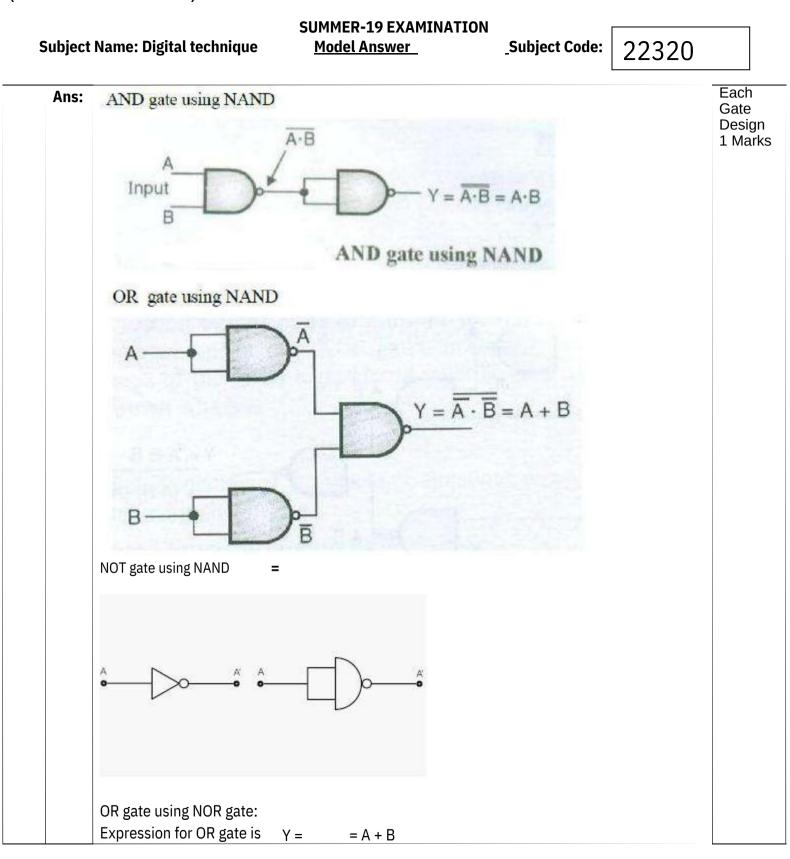
_Subject Code:

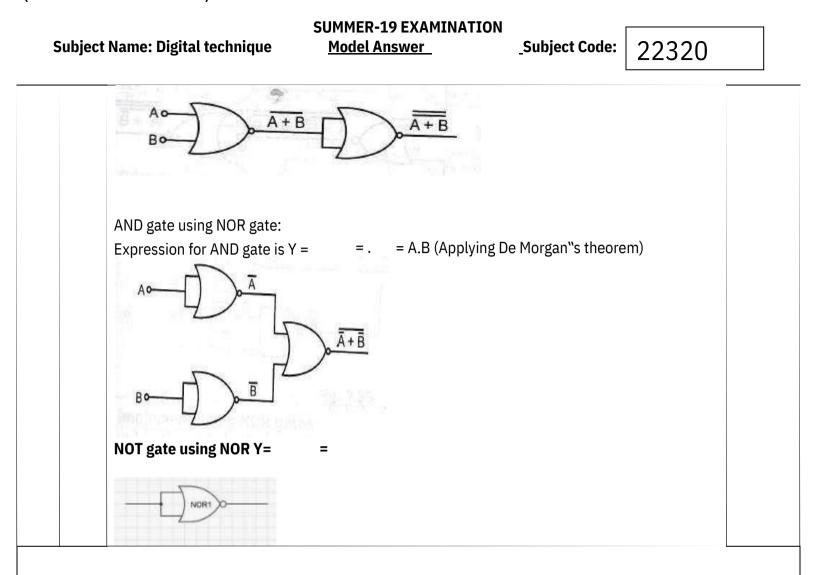
(e) Ans:	A D A C D D A C D D C L K [of J-I	<pre> flip-flop</pre>	and sta	te the ra		1.	4M Diagram -1.5M Working -1.5M State- 1M
		J		uts CLK	Out Q	puts Q	Comments		
		0 0 1 1	0 1 0 1	† † †	Q ₀ 0 1 Q ₀	Q ₀ 1 0 Q ₀	No change RESET SET Toggle	1	
	The clock signal IF CLK =0 than F					do not c	hange		



SUMMER-19 EXAMINATION **Subject Name: Digital technique** Subject Code: 22320 Model Answer Explain Ans: Note: Any one type of display shall be considered tion а 1. BCD to 7 segment decoder is a combinational circuit that accepts 4 bit BCD input and 2M generates appropriate 7 segment output. 2. In order to produce the required numbers from 0 to 9 on the display the correct combination of LED segments need to be illuminated. 3. A standard 7 segment LED display generally has 8 input connections, one from each LED Circuit segment & one that acts as a common terminal or connection for all the internal segments 4. Therefore there are 2 types of display 1. Common Anode Display 2. Common Cathode Diagram Display : 2M Common Anode Display +5V Common Decimal output shone MISB VER Û Bep Ċ e mm nput 8 4 d 7447 ٨ æ 1.58 ø ġ, for normal Functioning BI/FBO C RBI LT Should be connected 1 caric no Truth **Truth Table** Table seven segment decodes using Fox rommon anode 2M display 7 segment BGD Inpub roded outputs n DCBA a, b ē 7 d ē ٩ 014 0 0 0 0 0 0 0 0 0 0 1 O 0 1 0 1 O 0 1 t 1 1 0 0 0 1 0 0 0 t 0 ŧ 0 Ö 0 1 0 0 0 0 0 1 1 t 0 0 100 0 1 0 0 1 1 0 0 0 0 1 0 1 t ł C 0 0 0 O Ö 1 ł. 0 1 1 O 0 1 0 O 1 Ô ¥ Ŧ x 1 1 E 0 0 0 0 O 0 0 0 ł 0 0 4 Ľ 00 0 O 0 1 0 0 1


SUMMER-19 EXAMINATION Model Answer


_Subject Code:


	BED Sapuls	0	Li Ko	De	rode rode	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		3	oul pul b c	Com	mon atte	le_	
					Ŧ			1		-	÷			
	Truth													
	2	D		B		a	b	ent c	deel	output	r C	19	Display	
		0	0		0	1	1	1	1	1	1	0	1.1	
		0	0	0	1	0	1	1	õ	0	0	0		
		0	0	1	0	1	1	0	1	1	0	1	3	
		0	0	1.000	1	1	1	1	1	0	0	1	<u> </u>	
		0	1	0	0	8	1	t	Ö	0	(1	1-}	
		0	1	0	1	1	0	1	1	0	1	1	9	
		0	1	1	0	0	0	1.	1	1	1	1	5	
		0	÷	1.000	1	~ 1	1	1	0	0	0	0	7	
		1	0	0	0	1	1	-1	0	1	1	1		
b)	Describ	e th	ev	vorl	king	of 4 b	oit uni	iversa	l shift	regist	er.			6M
Ans:														

_Subject Code:

Q. No.	Sub Q. N.	Answers	Marking Scheme
6.		Attempt any TWO of the following :	12- Total
			Marks
	a)	Design a mod-6 Asynchronous counter with truth-table and logic.	<u>6M</u>
	Ans:	MOD 6 asynchronous counter will require 3 flip flops and will count from 000 to 101. Rest of the states are invalid. To design the combinational circuit of valid states, following truth table and K-map is drawn:	
			Truth Table 2M

SUMMER-19 EXAMINATION Subject Name: Digital technique

Model Answer

_Subject Code: 22320

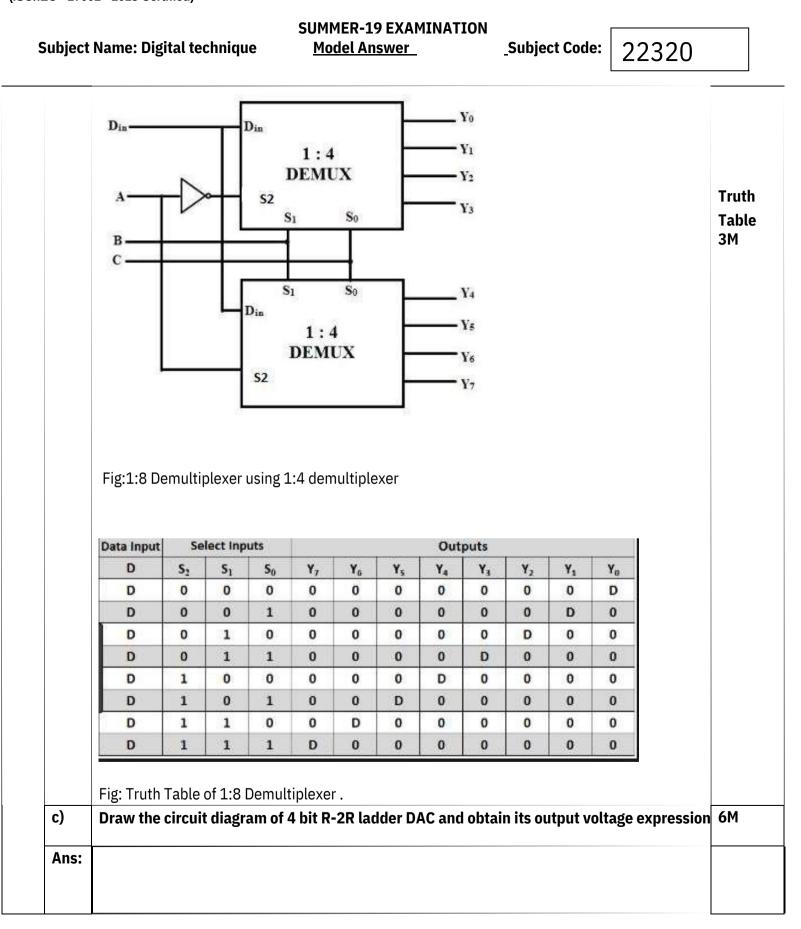
			-		1	
	Qc	QB	QA	Reset Logic		
	0	0	0	1		
	0	0	1	1		
	0	1	0	1		
	0	1	1	1		
	1	0	0	1		
	1	0	1	1		
	1	1	0	0		
	1	1	1	0		
From the above truth table,	we dra	w the	K-mar	is and get the expr	ression for the MOD 6	Logic
asynchronous counter.			up	Se and Set the expl		Diagra 2M
•	4=	0 4 10	1) s		2	
Fig: K-map for above truth to Thus reset logic is OR of con inputs of the counter so that counter will count from 000 asynchronous counter is sho	nplemo t as soo to 101	on as c L. The i	ount 1	10 reaches, the co	ounter will reset. Thus the	Circuit

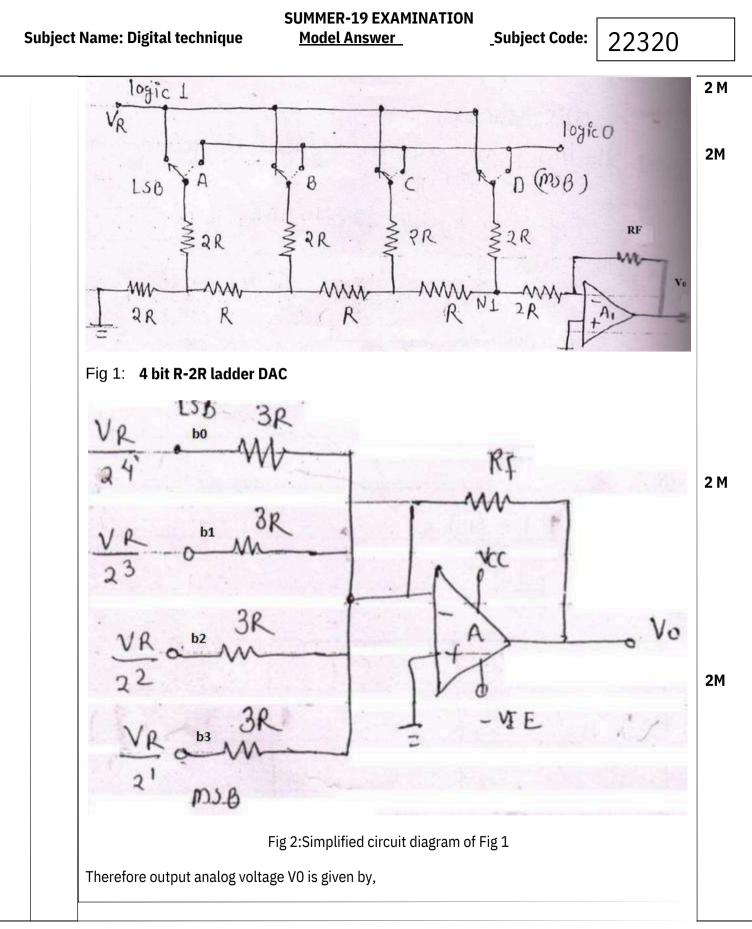
Subject Name: Digital technique _Subject Code: 22320 Model Answer Q0 QE Te Qe 14 Tg

B

SUMMER-19 EXAMINATION

Reset QA Reset Oc Resal Qa Fig: Circuit diagram of MOD 6 asynchronous counter




Design

3M

Ans:

CLK

Subject Name: Digital technique	SUMMER-19 EXAMINAT <u>Model Answer</u>	ION _Subject Code:	22320	
	$b_0 + \frac{Rf}{3R} \cdot \frac{VR}{2^3} b_1 + \frac{Rf}{3R}$	2 ² 3R	$\frac{\sqrt{R}}{2'}$ b3	2M
$V_o = -\left(\frac{Rf}{3R}\right)\left(\frac{Vf}{2}\right)$	2) [8b3+4b2+2]	61760		