|   | _ | _ | ı |
|---|---|---|---|
| • | L | L | ı |
| • | _ |   | ı |
|   | _ |   | ı |

# FINAL JEE(Advanced) EXAMINATION - 2022

(Held On Sunday 28th AUGUST, 2022)

PAPER-1

TEST PAPER WITH SULUTION

## **CHEMISTRY**

**SECTION-1: (Maximum Marks: 24)** 

|    | This section contains <b>EIGHT (08)</b> questions. The answer to each question is a <b>NUMERICAL VALL</b> on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places <b>truncate/round-off</b> the value to <b>TWO</b> decimal places. Answer to each question will be evaluated according to the following marking scheme. |                                                                       |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
|    | Answer to each                                                                                                                                                                                                                                                                                                                                                                                         | question will be evaluated according to the following marking scheme: |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |  |
|    | Full Marks                                                                                                                                                                                                                                                                                                                                                                                             | : +3 <b>ONLY</b> if the correct numerical value is entered;           |  |
|    | Zero Marks                                                                                                                                                                                                                                                                                                                                                                                             | : 0 In all other cases.                                               |  |
| 1. | 2 mol of Hg(g) is combusted in a fixed volume bomb calorimeter with excess of O2 at 298 K and                                                                                                                                                                                                                                                                                                          |                                                                       |  |

2 mol of Hg(g) is combusted in a fixed volume bomb calorimeter with excess of O2 at 298 K and 1 atm into HgO(s). During the reaction, temperature increases from 298.0 K to 312.8 K. If heat capacity of the bomb calorimeter and enthalpy of formation of Hg(g) are 20.00 kJ K and 61.32 kJ mol āt 298 K, respectively, the calculated standard molar enthalpy of formation of

HgO(s) at 298 K is X kJ mol. The value of |X| is \_\_\_\_\_. [Given : Gas constant R = 8.3 J K  $\vec{m}$ ol]  $^{-1}$ 

Ans. (90.39)

**Sol.** Qrxn = 
$$C\Box T$$

$$|\Box U| \times 2 = 20 \times 14.8$$

$$|U| = 148 \, kJ/mol$$

$$\square U = -148 \text{ kJ/mol}$$

$$\underset{2}{\text{Hg}}(g) + \underset{2}{\text{O2}}(g) \square \square \text{HgO(s)} : \square U = -148 \text{ kJ/mol}$$

$$\Box H = \Box U + \Box ng RT$$

$$=-148-\frac{3}{2}\Box\frac{8.3}{1000}\times298=-151.7101$$

$$Hg(l) + O_2^{\frac{1}{2}}(g) \square HgO(s)$$

$$\Box H = -151.7101 + 61.32 = -90.39 \text{ kJ/mol}$$

Ans. 90.39

**2.** The reduction potential  $(E_r^0 \text{ in V})$  of MnO-4(aq)/Mn(s) is \_\_\_\_\_.

 $[Given: EQ_{MnQ}+4\alpha q/MnQ+4\alpha q/MnQ+8]V; EQ_{MnQ}+4\alpha q/MnQ+4\alpha q/M$ 

Ans. (0.77)

Sol. 
$$\stackrel{+7}{\text{MnO}_4} \xrightarrow{-(3)} \stackrel{+4}{\text{MnO}_2} \xrightarrow{(2)} \stackrel{+2}{\text{Mn}} \xrightarrow{(2)} \stackrel{+2}{\text{Mn}}$$

For the required reaction  $\Box G^{\circ} = \Box G^{\circ}1 + \Box G^{\circ}2 + \Box G^{\circ}3$ 

$$\Box 7 \times E = 1.68 \times 3 + 1.21 \times 2 + (-1.03) \times 2$$

ED 
$$\frac{5.4}{7}$$
D0.7714

Ans. = 0.77

**3.** A solution is prepared by mixing 0.01 mol each of H2CO3, NaHCO3, Na2CO3, and NaOH in 100 mL of water. pH of the resulting solution is .

[Given: pKa1 and pKa2 of H2CO3 are 6.37 and 10.32, respectively; log 2 = 0.30]

Ans. (10.02)

**Sol.** H2CO3 + NaOH □ NaHCO3 + H2O

Milli moles 10 10 -

At end 0 0 10 + 10 = 20

Final mixture has 20 milli moles NaHCO3 and 10 milli moles Na2CO3

$$= 10.32 - \log 2 = 10.02$$

**4.** The treatment of an aqueous solution of 3.74 g of Cu(NO3)2 with excess KI results in a brown solution along with the formation of a precipitate. Passing H2S through this brown solution gives another precipitate X. The amount of X (in g) is \_\_\_\_\_.

[Given: Atomic mass of H = 1, N = 14, O = 16, S = 32, K = 39, Cu = 63, I = 127]

Ans. (0.32)

0.01 0.01

nS = 0.01 mole

5. Dissolving 1.24 g of white phosphorous in boiling NaOH solution in an inert atmosphere gives a gas **Q**. The amount of CuSO4 (in g) required to completely consume the gas **Q** is \_\_\_\_\_.

[Given: Atomic mass of H = 1, O = 16, Na = 23, P = 31, S = 32, Cu = 63]

**Ans. (2.38 / 2.39) Sol.** Mole of P4 =

P4 + 3NaOH + 3H2O III PH3 + 3NaH2PO2

0.01 mole

0.01 mole

2PH3 + 3CuSO4 [] Cu3P2 + 3H2SO4

 $0.01 \frac{3}{2} \times 0.01$ 

$$=\frac{0.03}{2}$$
 moles

WCuSO 0.03159 = 2.385 gm

- **6.** Ans. = 2.38 or 2.39
  - Consider the following reaction.

OH

red phosphorous  $Br_2$  R (major product)

On estimation of bromine in 1.00 g of  ${\bf R}$  using Carius method, the amount of AgBr formed (in g) is

Given : Atomic mass of H = 1, C = 12, O = 16, P = 31, Br = 80, Ag = 108

Ans. (1.50)

Sol. Red P Br Br M.W. = 250 g/mol

1gR  $\frac{1}{250}$  moles

No. of Br Atoms  $\frac{2}{250}$  moles

Moles of AgBr  $\Box \Box \frac{2}{250}$  moles

Mass of AgBr =  $\frac{2}{250}$   $\Box (108 \Box 80) \Box 1.504$ 

7. The weight percentage of hydrogen in Q, formed in the following reaction sequence, is \_\_\_\_\_.

[Given: Atomic mass of H = 1, C = 12, N = 14, O = 16, S = 32, Cl = 35]

## Ans. (1.31)

Sol. ONa

ONA

O2N

NaOH, 623 K

O2N

No2

Conc. H2SO4

and
conc. HNO3

NO2

Picric

$$=\frac{3}{229}$$
 010001.31%

acid

**8.** If the reaction sequence given below is carried out with 15 moles of acetylene, the amount of the product **D** formed (in g) is \_\_\_\_\_.

HCCH 
$$\xrightarrow{\text{iron tube}}$$
 A  $\xrightarrow{\text{H}_3C}$  Cl B  $\xrightarrow{\text{CH}_3COCH}$  C CH3COCI D  $\xrightarrow{\text{CH}_3COCH}$  D  $\xrightarrow{\text{CH}_3COCH}$ 

The yields of **A**, **B**, **C** and **D** are given in parentheses.

[Given: Atomic mass of H = 1, C = 12, O = 16, Cl = 35]

#### Ans. (136)

Sol.

## **SECTION-2: (Maximum Marks: 24)**

This section contains **SIX (06)** questions. Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).

Enreach guestion choose the petion (a) corresponding the lottowing matching werled.

Full Marks : +4 **ONLY** if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen; Partial Marks : +2 If three or more options are correct but **ONLY** two options are chosen,

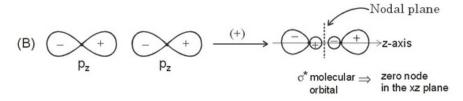
Partial Marks both of which are correct;

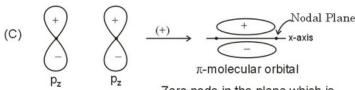
: +1 If two or more options are correct but **ONLY** one option is chosen and it

Zero Marks is a correct option;

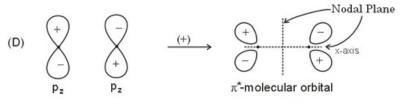
Negative Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

: -2 In all other cases.


- **9.** For diatomic molecules, the correct statement(s) about the molecular orbitals formed by the overlap to two 2*pz* orbitals is(are)
  - (A) 🛘 orbital has a total of two nodal planes.
  - (B)  $\Box^*$  orbital has one node in the xz-plane containing the molecular axis.
  - (C) orbital has one node in the plane which is perpendicular to the molecular axis and goes through the center of the molecule.


Nodal plane

(D)  $\Box^*$  orbital has one node in the xy-plane containing the molecular axis.


Ans. (A,D)

Sol. (A)  $p_z$   $p_z$  p





Zero node in the plane which is perpendicular to the molecular axis and goes through the center of the molecule



One node in xy plane containing the molecular axis

- **10.** The correct option(s) related to adsorption processes is(are)
  - (A) Chemisorption results in a unimolecular layer.
  - (B) The enthalpy change during physisorption is in the range of 100 to 140 kJ mol.<sup>-1</sup>
  - (C) Chemisorption is an endothermic process.
  - (D) Lowering the temperature favors physisorption processes.

#### Ans. (A,D)

- **Sol.** (A) Chemisorption is unimolecular layered.
  - (B) Enthalpy of physisorption is much less in magnitude.
  - (C) Chemisorption of gases on solids is exothermic.
  - (D) As physisorption is exothermic so lowering temperature favours it.
- 11. The electrochemical extraction of aluminum from bauxite ore involves.
  - (A) the reaction of Al2O3 with coke (C) at a temperature > 2500°C.
  - (B) the neutralization of aluminate solution by passing CO2 gas to precipitate hydrated alumina (Al2O3.3H2O)
  - (C) the dissolution of Al2O3 in hot aqueous NaOH.
  - (D) the electrolysis of Al2O3 mixed with Na3AlF6 to give Al and CO2.

#### Ans. (B,C,D)

- **Sol.** (A) Electrochemical extraction of Aluminum from bauxite done below 2500°C
  - (B)  $2Na[Al(OH)4]aq. + 2CO2(g) \square Al2O3.3H2O(s) \square + 2NaHCO3(aq.)$

The sodium aluminate present in solution is neutralised by passing CO2 gas and hydrated Al2O3 is precipitated.

(C)  $Al2O3(s) + 2NaOH(aq.) + 3H2O(l) \square 2Na[Al(OH)4]aq.$ 

Concentration of bauxite is carried out by heating the powdered ore with hot concentrated solution of NaOH

(D) In metallurgy of aluminum, Al2O3 is mixed with Na3AlF6

- 12. The treatment of galena with HNO3 produces a gas that is
  - (A) paramagnetic

(B) bent in geometry

(C) an acidic oxide

(D) colorless

Ans. (A,D)

**Sol.** 3PbS + 8HNO3 [] 3Pb(NO3)2 + 2NO + 4H2O + S

NO I Neutral oxide, Paramagnetic, Linear geometry, Colourless gas

**13.** Considering the reaction sequence given below, the correct statement(s) is(are)

- (A) **P** can be reduced to a primary alcohol using NaBH4.
- (B) Treating **P** with conc. NH4OH solution followed by acidification gives **Q**.
- (C) Treating **Q** with a solution of NaNO2 in aq. HCl liberates N2.
- (D) P is more acidic than CH3CH2COOH.

Ans. (B,C,D)

Sol.

# 14. Consider the following reaction sequence,

the correct option(s) is(are)

(A) 
$$\mathbf{P} = H2/Pd$$
, ethanol

2. KMnO4 - KOH, heat

(B) 
$$\mathbf{P} = \text{Sn/HCl}$$

(C) 
$$\mathbf{S} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

2. KMnO4 - KOH, heat

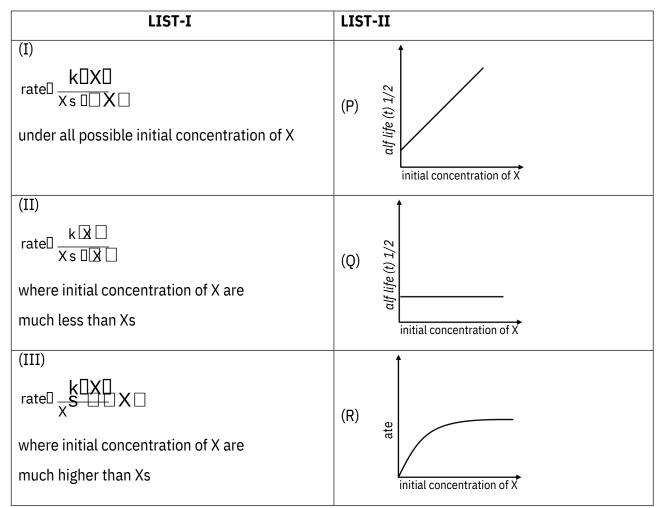
(D) 
$$\mathbf{Q} = \bigcup_{\mathsf{HOOC}} \mathsf{NO}$$

$$\mathbf{R}$$
 = H2/Pd, ethanol

Ans. (A,B,C)

Sol.

## **SECTION-3: (Maximum Marks: 12)**


- This section contains **FOUR (04)** Matching List Sets.
- ☐ Each set has **ONE** Multiple Choice Question.
- Each set has **TWO** lists: **List-I** and **List-II**.
- List-I has Four entries (I), (II), (III) and (IV) and List-II has Five entries (P), (Q), (R), (S) and (T).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

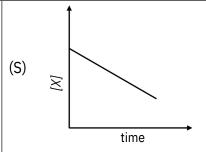
Full Marks : +3 **ONLY** if the option corresponding to the correct combination is chosen;

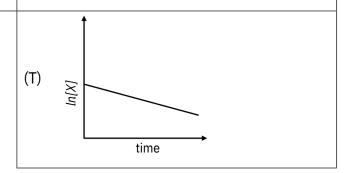
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

**15.** Match the rate expressions in LIST-I for the decomposition of X with the corresponding profiles provided in LIST-II. Xs and k constants having appropriate units.




JEE(


(IV)

rate 
$$\frac{k X^2}{X s | X|}$$

where initial concentration of X is

much higher than Xs





(A) I 
$$\square$$
 P; II $\square$  Q; III  $\square$  S; IV  $\square$  T

(B) I 
$$\square$$
 R; II  $\square$  S; III $\square$  S; IV  $\square$  T

(C) 
$$I\Box$$
 P;  $II$   $\Box$  Q;  $III\Box$  Q;  $IV$   $\Box$  R

(D) I 
$$\ \square$$
 R; II  $\ \square$  S; III  $\ \square$  Q; IV  $\ \square$  R

Ans. (A)

**Sol.** (I) 
$$\text{rate} \Box \frac{k[x]}{xs \Box [x]} \Box \frac{k}{\frac{xs}{[x]} \Box 1}$$

If [x] 00000 rate 0 k 0 order = 0

$$\square \qquad (I) - (R), (P)$$

(II) [x] < < xs 
$$\square$$
 rate =  $\frac{k[x]}{xs}$   $\square$  order = 1

$$\square \qquad (II) - (Q), (T)$$

(III) 
$$[x] > xs \square rate = k \square order = 0$$

$$\square$$
 (III) – (P), (S)

(IV) rate 
$$\frac{k[x]2}{xs \square [x]}$$

$$[x] > xs \square rate = k[x]$$

## **16.** LIST-I contains compounds and LIST-II contains reaction

LIST-I

LIST-II

(I) H2O2

(P) Mg(HCO3)2 + Ca(OH)2 []

(II) Mg(OH)2

(Q) BaO2 + H2SO4 III

☐ (III) BaCl2

(R) Ca(OH)2 + MgCl2 []

(IV) CaCO3

- (S) BaO2 + HCl □□
- (T) Ca(HCO3)2 + Ca(OH)2 []

Match each compound in LIST – I with its formation reaction(s) in LIST-II, and choose the correct option

- (A)  $I \square Q$ ;  $II \square P$ ;  $III \square S$ ;  $IV \square R$
- (B) I  $\square$  T; II  $\square$  P; III  $\square$  Q; IV  $\square$  R
- (C)  $I \square T$ ;  $II \square R$ ;  $III \square Q$ ;  $IV \square P$
- (D) I [] Q; II [] R; III [] S; IV [] P

# Ans. (D)

**Sol.** (P) Mg(HCO3)2 + 2Ca(OH)2 [] Mg(OH)2 + 2CaCO3 + 2H2O

- (Q) BaO2 + H2SO4 [] H2O2 + BaSO4
- (R) Ca(OH)2 + MgCl2 [] Mg(OH)2 + CaCl2
- (S) BaO2 + 2HCl 🛮 BaCl2 + H2O2
- (T) Ca(HCO3)2 + Ca(OH)2 [] 2CaCO3 + 2H2O
- 17. LIST-I contains metal species and LIST-II contains their properties.

LIST-I

LIST-II

(I) [Cr(CN)6] 4-

(B) t2g orbitals contain 4 electrons

- (II) [RuCl6] 2-
- (III) [Cr(H2O)6]<sup>2+</sup>
- (IV)  $[Fe(H20)6]^{2+}$

(T) d species

[Given: Atomic number of Cr = 24, Ru = 44, Fe = 26]

Metal each metal species in LIST-I with their properties in LIST-II, and choose the correct option

- (A) I [] R, T; II [] P, S; III [] Q, T; IV [] P, Q
- (B) I  $\square$  R, S; II  $\square$  P, T; III  $\square$  P, Q; IV  $\square$  Q, T
- (C) I  $\square$  P, R; II  $\square$  R, S; III  $\square$  R, T; IV  $\square$  P, T
- (D) I  $\square$  Q, T; II  $\square$  S, T; III  $\square$  P, T; IV  $\square$  Q, R

# Ans. (A)

**Sol.** (1) [Cr(CN)] <sub>6</sub> <sup>4-</sup>

 $Cr^{+2}[Ar]$  <sub>18</sub> 3d<sup>4</sup>4s, low spin complex

P,R,T

(2) [RuCl6] 2-

Ru $\stackrel{\text{def}}{=}$  [Kr]  $_{36}4\text{dfs}$ , low spin complex

$$\begin{array}{cccc} - & - & e_g^0 \\ 1 & 1 & 1 & t_{2g}^4 \end{array}$$

P,R,S,T

(3) [Cr(H2O)6]<sup>2+</sup>

Cr <sup>±2</sup> [Ar]183d4\$; high spin complex

$$\begin{array}{ccc} \underline{1} \\ \uparrow_{\Delta_0} < \overline{P} & e_g^1 \\ \underline{1} & \underline{1} & \underline{1} & t_{2g}^3 \end{array}$$

Q,T

(4) [Fe(H2O)6]<sup>2+</sup>

Fe<sup>+</sup> [Ar]183d; High spin complex

$$\begin{array}{ccc} \underline{1} & \underline{1} & e_g^2 \\ \underline{1} & \underline{1} & \underline{1} & t_{2g}^4 \end{array}$$

P,Q

18. Match the compounds in LIST-I with the observation in LIST-II, and choose the correct option.

LIST-I

LIST-II

(I) Aniline

(P) Sodium fusion extract of the compound on boiling with FeSO4, followed by acidification with conc. H2SO4, gives Prussian blue color.

(II) o-Cresol

(Q) Sodium fusion extract of the compound on treatment with sodium nitroprusside gives blood red color.

(III) Cysteine

(R) Addition of the compound to a saturated solution of NaHCO3 results in effervescence.

# (IV) Coprolactam

- (S) The compound reacts with bromine water to give a white precipitate.
- (T) Treating the compound with neutral FeCl3 solution produces violet color.
- (A) I  $\square$  P, Q; II  $\square$  S; III  $\square$  Q, R; IV  $\square$  P
- (B) I  $\square$  P; II  $\square$  R, S; III  $\square$  R; IV  $\square$  Q, S
- (C)  $I \square Q$ , S;  $II \square P$ , T;  $III \square P$ ;  $IV \square S$
- (D) I  $\square$  P, S; II  $\square \square T$ ; III  $\square$  Q, R; IV  $\square$  P

## Ans. (D)

Sol.

: Blue colour in Lassign test due to presence of N

Aniline

NH2



:Violet colour with FeCl3 due to presence of phenolic

ОН

HS-CH2-CH-COOH

NH2 Cystein : It gives blod red colour with NaSCN

N-H D

: Blue colour in Lassign test due to presence of  $\ensuremath{\mathsf{N}}$ 

Caprolactam