UNIT-9 CHEMICAL KINETICS

Important Points

 Chemical Kinetics : The branch of chemistry which deals with the study of the rate of reaction and the factor affecting them.

Kinetics - Greek word 'kinesis' = movement

- \tilde{n} classification of reaction on the basis of rates:
 - Very fast reaction : ionic reactions (10-9 sec)
 - very slow reaction : rusting of iron, radiation from uranium.
 - Slow reaction : reaction by combining dinitrogen and dihydrogen under certainconditions.
- ñ Factors Affecting rates of Reaction:
 - (i) The state of substance and the area of surface
 - (ii) concentration of solution. (iii) temperature of system.
 - (v) Effect of catalyst
 - (iv) Pressure of system(vi) Presence of light

(If there is any impurity which tries to decrease the rate of reaction then it is calledcatalytic poison)

ñ Rate of Reaction :

The rate of reaction is the change in the concentration of any one of the reactants or products per unit time.

Average rate of reaction

$$rav = -\frac{D[R]}{Dt} = +\frac{D[P]}{Dt}$$

Instantaneous Rate of Reaction

rinst =
$$-\frac{d[R]}{dt} = +\frac{d[P]}{dt} as D t = 0$$

Rate of reaction is always positive. The minus sign is used simply to show that the concentration of the reactant is decreasing.

ñ Rate determination :

In the reactions the stoichiometric coefficients may be different. Rate of reaction can be determined but the determination must be consistent. In chemical kinetics, the following method is accepted.

Rate =
$$-\frac{1}{V_{R}} \stackrel{\text{éd}[R]}{=} \stackrel{\text{i}}{=} \frac{1}{V_{R}} \stackrel{\text{ed}[R]}{=} \frac{1}{V_{R}} \stackrel{\text{ed}[R]}{=}$$

• For any reation n1A + n2B [®] n3C + n4D

Rate =
$$-\frac{1}{n_1}\frac{d[A]}{dt} = -\frac{1}{n_2}\frac{d[B]}{dt} = \frac{1}{n_3}\frac{d[C]}{dt} = \frac{1}{n_4}\frac{d[D]}{dt}$$

$$5Br_{(aq)} + BrO-3_{(aq)} + 6H_{(aq)}^{+} \square 3Br_{2(aq)} + 3H2O(\square)$$

Rate =
$$-\frac{1d}{5}\frac{e^{Br}}{dt} = -\frac{de^{Br}_{3}}{dt} = -\frac{1d}{6}\frac{e^{H}}{dt} = +\frac{1}{3}\frac{d[B]}{dt}^{2}$$

- In aqueous solution, there is negligible change in concentration of water and so the change in its concentration is not expressed.
- ñ Rate Law :
 - The presentation of the rate of reaction with reference of concentration of reactants is called rate law.
 - This rate law in the wide range of concentration of reactants or products is studied and the law that is established is called 'differential rate equation' or 'Rate expression'. Viz

.

$$H_{2(g)} + I_{2(g)} \Box 2HI_{(g)} \qquad Rate = K[H][I]$$

- ñ Rate constant and order of Reaction :
 - In most of the reaction carried out, the simple rate equation can be obtained in which rate is proportional to exponents of the concentration of reactant. The exponent is called order of reaction.

H ₂ + I2 [®] 2HI	Ratea[2]] [2]	
	\Rate=k H[2]]I	
H ₂ +Br ₂ [®] 2HBr	Ratea $[H_2] [Br_2]^{1/2}$	
	$Rate=K[B]_{2}^{\frac{1}{2}}$	
2N2O5 [®] 4NO ₂ +O ₂	Rate a [210]5]	
	\Rate=K[N ₅ O]	

- Where K is rate constant and it is called specific rate constant when concentration of reactant is 1 M. At that time reaction rate = rate constant.
- It is necessary to note that the order of reaction has no relation with the stoichiometric cofficient of reactant.
- For the reaction n1A + n2B [] n3C + n4D
 - Rate = k [A]x[B]y
 - Order of reaction with reference to reactant A is x and with that of reactant B is y. Hence total order of reaction = x + y. Thus the total order of reaction is equal to the sum of exponents of concentration of all reactants.
 - 5Br-+BrO-+6H+ [3Br2+3H20
 - Rate = K [Br-][BrO-][H+]2
 - Order of reaction = 1 + 1 + 2 = 4
 - The total order of reaction can be positive, zero or even a fraction
 - Examples of different order.
 - (I) 2NH 3(g)³⁴⁹⁴ N2(g)+3H2(g) Rate=k[NHo 3]
 - (ii) H2O2®H2O+O $\frac{1}{2}$ ²

Rate=k[H2O]

- Rate=k[N**Q**];[] (iii) 2NO2+ F₂ [®] 2NO 2 F Rate=k $[NO_{2}^{J_{2}}[O_{2}]]$
- (iv) $2NO + O_2^{\ \ \text{e}} 2NO_2$
- (v) CH CHO ® CH 4+CO
- (vi) CO + Cl₂ $^{\circ}$ COCl₂
- Unit of Rate constant ñ

Rate =
$$\frac{dx}{dt} = k$$
 (con)n

 $\setminus K = \frac{dx}{dt} \cdot \frac{1}{(cond)} = \frac{conc}{time} \cdot \frac{1}{(cond)}$

Rate = k[CH 3CHO]^{1.5}

Rate $k (0)^2 [Cl_2]^{1.5}$

dt		
Order of reaction	Unit of K	
0 1 2 n	M s-1	Mole litre-1 time-1
Molecularity :	s-1	time-1
	M-1 S-1	litre mole-1 time-1
	M1-n S-1	litre1-n molen-1 time-1

ñ

- The number of atoms, ions or molecules of the reactant that take part in the reaction and which experience collision with each other so that the reaction results, it is called molecularity
- Hence, the orders of reactions and molecularities of bimolecular, trimolecular and elementary reaction are same.
- The possibility of collision of three or more molecules with one another and to result in the reaction is less.
- The molecularity more than three is not seen. ñ

Molecularity	Order of the reaction
It is equal to the sum of the number of	It is equal to the exponents of the molar
reactant particles taking part in a single step reaction	concentration of the reactants in the experimenta determined rate equation.
It is always a whole number	It can be fractional
It cannot be zero	It can be zero
Molecularity applies to one step reaction or a single step of reaction which involves several steps for its completion. The molecularity of an overall complex or multistep reaction has no significance or meaning.	Order of reaction applies to a reaction as a wholes, irrespective of the intermediate steps involved for its completion.
It can be obtained from simple balanced equation for the single step reactions.	It cannot be obtained from a simple balanced equation. It is obtained only from experimentally determined rate equation.
It does not help in elucidation of reaction mechanism	It is helpful in the elucidation of reaction mechanism

- \tilde{n} Zero order reaction :
 - The rate of the reaction is proportional to zero exponent of the concentration of reactant.

$$-\frac{-d[R]}{dt} = k[] \square R \quad \langle [R] = K.t + [R]_{o}$$

- Graph of [R] versus t then straight line. Slope = - k and intercept = [R]o
- \tilde{n} First order reaction :
 - The rate of the reaction is proportional to exponent one of concentration of reactant.

$$-\frac{d[R]}{dt} = k[R] \qquad kt = \ln \frac{[R]O}{[R]}$$

$$[R] = [R]_{o} \cdot e^{-kt}$$

$$\log[R] = -\frac{K}{2 \cdot 303} \cdot t + \log[R_{o}]$$

Graph of log[R] t versus t then straight line.

Slope=-
$$\frac{K}{2.303}$$
 and intercept = log[R]_o
 $t_{\frac{1}{2}} = \frac{0.693}{k}$

- \tilde{n} Pseudo unimolecular or Pseudo first order reaction :
 - Those reaction which are not truly of the first order but under certain conditions become reactions of the first order. Examples : (i) Hydrolysis of ethyl acetate. (ii) Hydrolysis of cane sugar.
- \tilde{n} Determination of order of reaction :
 - Methods : (i) Intial rate method
 - (ii) Integrated rate equation method or Graphical method
 - (iii) Half life method
 - (iv) Ostwald's isolation method
- \tilde{n} Ostwald's Isolation method :
 - In certain reaction there is involvement of more than one reactants. In this method, the concentration of other reactants in comparison to one reactant is taken in very large proportion. The reaction rate will be indicative with respect to reactant with less concentration because the concentration of other reactants remain almost constant.

- ñ Half life method :
 - The time taken for half of the reaction to complete.
 - It is very simple method.

- For zero order reaction ta1[R] $_{\circ}$
- first order reaction t1/2 is independent of initial concentration
- second ord er reaction t1/2 a [R⁻]
 nth order reaction

t¹/ a [
$$\mathbf{R}_{a}^{1}$$
 or t/**2** a $\frac{1}{[\mathbf{R}]_{a}^{n-1}}$

ñ Arrhenius equation :

K=A.e- Ea/RT

$$\begin{bmatrix} \log k = \log A - \frac{Ea}{2.303R} \cdot \frac{1}{T} \\ \log k = \log K \text{ versus } \frac{1}{2} = \text{ straight line} \\ \text{Slope} = -\frac{Ea}{2.303R} \\ \log \frac{K}{K^2} = \frac{Ea}{2.303R} \cdot \frac{e^2}{e^2} - \frac{1}{T_2} \cdot \frac{1}{u} = \frac{Ea.DT}{2.303 R.T_1.T_2} \\ \end{bmatrix}$$

- ñ Threshold energy :
 - Arrhenius equation shows that rate constant increases exponentially with temperature.
 - Increasing temperature from 300 to 310 K, the Kinetic energy increases only by 3% because it is proportional to temperature.
 - The reaction rates have almost doubled by increase in temperature by 10 K.
 - The explanation for this can be given that there must be some pushing energy or threshold energy required for the reaction of molecules.

\tilde{n} Arrhenius factors :

ñ	Ea = N A.E*	where Ea Na	= Activation energy = Avogadro number
	K = Ae-Ea/RT	E* where A	= Kinetic energy = pre-exponential factor or frequency factor
		Ea	= Energy of activation

Both A & Ea= Arrhenius factors

\tilde{n} Theory of collision :

- Max Trauz and William Lewis (1916-18) = Theory of collision.
- In Chemical reaction, the number of collision per second per unit volume is called collision frequency (z).

- For biomolecular reaction A + B [®] Products
- Rate = Z _{AB} . e-Ea/RT
- Rate = P.Z $_{AB}$. e-Ea/RT
- ZAB = collision frequency of A and B whose energy is equal to or more than activation en er gy.
- P = Probability factor OR steric factor
- Those collision in which molecules collide with sufficient kinetic energy (threshold energy) and proper direction, resulting into products. Such collision are called effective OR fruitful
- ñ Endot**hellinie**neaction and Exothermic reaction.
 - Minimum potential energy of reactants is less than that of products then the reaction will be the endothermic.
 - Minimum potential energy of reactants is more than that of products then the reaction will be exothermic.
 - Endothermic reation : DH = Hp-Hr = +ve
 - DH = Ea-Ear = +ve when Ea > Ear
 - Exothermic reaction : DH = Hp-Hr = -ve
 - DH = Ea-Ear = -ve when Ea < Ear
 - Where Ea = activation energy of forward reaction
 - Ear = activation energy of reverse reaction
- \tilde{n} Effect of catalyst :
 - The main function of catalyst is decrease the activation energy, bring energy barrier down and increases the rate of reaction.
 - Equilibrium constant (K) is not changed.
 - Rate of reaction increases.

M .C.Q.

- 1. Rate of reation is defined as
 - (a) decrease in the concentration of a reactant
 - (b) increase in the concentration of a product

(c) change in the concentration of any one of the reactants or products per unit time.

- (d) all the above three are correct
- 2. 2A + B [®] 3C for the reaction instant rate of reaction is...

(a)
$$+\frac{1}{2}\frac{d[A]}{dt} = +\frac{[]}{d} + \frac{1}{3}\frac{d[C]}{dt}$$

(b) $-\frac{1}{2}\frac{d[A]}{dt} = -\frac{d[B]}{dt} = +\frac{1}{3}\frac{d[C]}{dt}$
(c) $+2\frac{d[A]}{dt} = +\frac{d[t]}{dt} = +3\frac{[]}{dt}$
(d) $-\frac{2}{d[A]} = -\frac{[]}{dt} = +3\frac{[]}{dt}$
The rate of reaction of spontaneous reaction is generally very slow. This is due to the spontaneous reaction is generally very slow. This is due to the spontaneous reaction is generally very slow. This is due to the spontaneous reaction is generally very slow. This is due to the spontaneous reaction is generally very slow.

- The rate of reaction of spontaneous reaction is generally very slow. This is due to the fact that..
 (a) the equilibrium constant of the reaction is < 1
 - (b) the activation energy of the reaction is large
 - (c) the reaction are exothermic
 - (d) the reaction are endothermic
- 4. N2 + 3H2[] 2NH3 For the reaction the rate of change of concentration for hydrogen is -0.3 x 10-4Ms-1. The rate of change of concentration of ammonia is ...
 (a) 0.2 / 10.4 (b) 0.2 / 10.4 (c) 0.1 / 10.4 (c) 0.2 (c

(b) The rate of formation of D is one half the rate of consumption of A

- (c) The rate of appearance of C is one half the rate of disappearance of B
- (d) The rate of disappearance of B is one fourth of the rate of disappearance of A
- 6. _____ does not affect the rate of reaction. (a) size of the vessel (h
 - (a) size of the vessel (b) amount of the reactants (c) physical state of reactants (d) DH of reaction
- 7. In the reaction N2O4(g) [®] 2NO2(g) the pressure of N2O4 falls from 0.5 atm to 0.32 atm is 30 minutes, the rate of appearance of NO2(g) is
 - (a) 0.012 atm min-1 (b) 0.024 atm min-1 (c) 0.006 atm min-1 (d) 0.003 atm min-1
- 8. In the reaction K1 and K2 are the velocity constants for the forward and backward reaction respectively. The equilibrium constant is

(b) K=K 1 ' K2 (c) K
$$=\frac{K_2}{4}$$
 (d)

d) none of the above

9. For the reaction A + B + C $^{\circ}$ Products, Rate = K[A]2[B]3[C]. The order of reaction is

(a) 3 (b) 1 (c)
$$\frac{5}{6}$$
 (d) $\frac{11}{6}$
10. For a reaction pA + qB $^{\circ}$ Products. Rate = K[A]m[B]n. Then
(a) (p+q) = (m+n) (b) (p+q) 1 (m+n)
(c) (p+q) > (m+n) (d) (p+q) = (m+n) or (p+q) 1 (m+n)

213

11.	11. A + 2B [®] C + D For a reaction from following data correct rat law =			aw =	
	Mole	liter-1			
	(A)	(B)	mole lite-1 min-	1	
	1 0.1	0.1	6.0 ′ 10-3		
	2 0.3	0.2	7.2 ´ 10-2		
	3 0.3	0.4	2.88 ´ 10-1		
	4 0.4	0.1	2.4 ′ 10-2		
	(a) Rate = K [A]2[B]	(b) Rate = K [A]2[B]2	
	(c) Rate = K [A][B]]2	(d) Rate = K [A][B]	
12.			ling of [A], increases the eaction rate. The rate e	e reaction rate to four times, xpression is	
	(a) Rate = K [A]2	(b) Rate = K [A]	(c) Rate = K [A]2[B]2(d) Rate = K [A][B]	
13.	A zero order react	ion is one whose rate i	s independent of		
	(a) Reaction vesse	l volume	(b) Concentration (of reactants	
	(c) temperature		(d) pressure of ligh	ıt	
14.		of a reaction changes			
	(a) pressure is cha	•		of reactants changed	
	(c) temperature is	-	(d) a catalyst is add	ded	
15.		ving is a reaction of zer	o order ?		
	(a) H+Cl ³ ₄ h ³ ₄ J [®]	2HCl	(b) 2N2O5®4NO2+	-02	
	(c) 2HI®H 2+I2		(d) H2+Br2®2HBr		
16.	Which of the follow	ving is a reaction of frac	ctional order ?		
	(a) 2N2O5®4NO2+	02	(b) 2NO2+F2®2NO	2F	
	(c) H 2 + Br2 ®2⊦	lBr	(d) 2NO+02 [®] 2NO	2	
17.	A reaction involvin	g two different reactan	ts can never be a		
	(a) bimolecular rea	iction	(b) Unimolecular re	(b) Unimolecular reaction	
	(c) first order react	ion	(d) second order re	eaction	
18.	For a reaction 3A	hProducts, the order o	f reaction		
	(a) 3		(b) 1, 2 or 3		
	(c) zero		(d) any value betw	een 1 and 3	
19.	When concentratic of reaction is	on of reactant is increas	ed eighteen times the ra	ate becomes two times, the rate	
	(a) 1	(b) 1 /2	(c) $\frac{1}{3}$	(d) $\frac{1}{4}$	
20.	The rate determini make the reaction	ng step in a reaction is	, •	e concentration of B would	
	(a) two times	(b) same rate	(c) four times	(d) $\frac{1}{4}$ times	
		, ,	~~~~		
			214		

21.	The rate law of a reaction is rate = K [A]2[B]. On doubling the concentration of both A and B the rate X will become					
	(a) x3	(b) 8x	(c) 4x2	(d) 9x		
22.			Products, the rate is gov			
		The rate order of ic		, ,		
	(a) 3	(b) 2	(c) 1	(d) O		
23.	If the order of read	tion is zero. It mean	s that			
	(a) rate of reaction	is independent of ter	nperature			
	(b) rate of reaction is independent of the concentration of the reacting species					
	(c) the rate of form	ation of activated co	mplex is zero			
	(d) the rate of deco	mposition of activate	ed complex is zero			
24.	The reactions of high	gher order are rare b	ecause			
	(a) many bady collis	sions involve very hig	h activation energy			
	(b) many bady colli	sions have a low prob	bability			
	(c) many bady collis	sions are not energet	ically favoured			
	(d) many bady colli	sions can take place	only in the gaseous phas	е.		
25.	2A +2B [®] D + E For	the reaction following	ng mechanism has been	proposed.		
	A + 2B [®] 2C +D (s	low)	A + 2C [®] E (Fast)			
	The rate law expres	ssion for the reaction	n is			
	(a) rate = K [A]2[B]2	2	(b) rate = K [A]2[B]	2[C]		
	(c) rate = K [A][B]2		(d) rate = K [A][B]			
26.	A 2 + B2® 2 AB read	ction follow the mec	hanism as given below			
	(i) A 2 [®] 2A (fast)					
	(ii) A + B 2 [®] AB +	B (slow)				
	(iii) A + B ® AB (fast	t) the order of overal	l reaction is			
	(a) 1.5	(b) 2	(c) 0	(d) 1		
27.	In the sequence of	reaction A¾K¾1®, B	3⁄4K3⁄42®, C3⁄4K3⁄43® then the	e rate of determining step of		
	reaction is					
	(a) A [®] B	(b) B [®] C	(c) C [®] D	(d) A ® D		
28.		+ B [®] Products, reactived the rate of reactive	tion rate = K [A][B]2. Conc tion will be	entration of A is doubled		
	(a) doubled	(b) halved	(c) unaffected	(d) four times		
29.		centration of reaction f the reaction would	•	nes, the rate increases only two		
	(a) 2	(b) 4	(c) $1/2$	(d) 1 /		
30.			/ =	om 0.1 M to 1 M, the rate		
	(a) 10	(b) 1	(c) 2	(d) 3		
			215			

c)There is no differe d)Molecularity is alw for a single step rea a) zero Which of the followin a) For a zero order b) Both order and n c) Active mass of 1 d) For the first order h alv ed . cf 'a' is the initial cor f is of zero order, w a) K 2a The reaction 203 [®] i) 0 3 [] 02 + 0 (fast The rate law express a) r = K[0]2 3 For reaction of zero	(b) $\frac{a}{2k}$ 302 proceeds in two stent) sion should be (b) r = K[02 3][02] ⁻¹	mber. the molecularity is (c) 2 es with temperature. are always the same. wo litre flask is 0.5. eaction halved as the co at, the time taken for con (c) a/k eps as follows. (ii) 0 + 03 [®] 202 (slow (c) r = K[03][02]	(d) 3 concentration of a reactan mpletion of the reaction (d) $\frac{k}{a}$) (d) r = K[O3][O2] 1
c)There is no differe d)Molecularity is alw for a single step rea a) zero Which of the followin a) For a zero order b) Both order and n c) Active mass of 1 d) For the first orde h alv ed . f 'a' is the initial cor f is of zero order, w a) K 2a The reaction 203 ® i) 0 3 [] 02 + 0 (fast The rate law express	ways a positive whole num action A + 2B [®] Products, (b) 1 ng statement is false ? reaction, the rate change nolecularity of a reaction .28 g of HI present in a t er reaction, the rate of re ncentration of the reactar ill be (b) ^a / _{2k} 302 proceeds in two ste t) sion should be	mber. the molecularity is (c) 2 es with temperature. are always the same. wo litre flask is 0.5. eaction halved as the co at, the time taken for con (c) a_k eps as follows. (ii) 0 + 03 [®] 202 (slow	(d) 3 oncentration of a reactangletion of the reaction (d) $\frac{k}{a}$
c)There is no differe d)Molecularity is alw for a single step rea a) zero Which of the followin a) For a zero order b) Both order and n c) Active mass of 1 d) For the first orde h alv ed . f 'a' is the initial cor f is of zero order, w (a) K 2a The reaction 203 ® i) 0 3 [] 02 + 0 (fast	ways a positive whole num action A + 2B [®] Products, (b) 1 ng statement is false ? reaction, the rate change nolecularity of a reaction .28 g of HI present in a t er reaction, the rate of re ncentration of the reactar ill be (b) ^a / _{2k} 302 proceeds in two stee t)	mber. the molecularity is (c) 2 es with temperature. are always the same. wo litre flask is 0.5. eaction halved as the co of, the time taken for con (c) a/k eps as follows.	(d) 3 oncentration of a reactangletion of the reaction, (d) $\frac{k}{a}$
c)There is no differe d)Molecularity is alw for a single step rea a) zero Which of the followin a) For a zero order b) Both order and n c) Active mass of 1 d) For the first orde h alv ed . f 'a' is the initial cor f is of zero order, w (a) K 2a The reaction 203 ®	ways a positive whole num action A + 2B [®] Products, (b) 1 ng statement is false ? reaction, the rate change nolecularity of a reaction 28 g of HI present in a t er reaction, the rate of re ncentration of the reactar ill be (b) ^a / _{2k} 302 proceeds in two ste	mber. the molecularity is (c) 2 es with temperature. are always the same. wo litre flask is 0.5. eaction halved as the co of, the time taken for con (c) a/k eps as follows.	(d) 3 oncentration of a reactangletion of the reaction, (d) $\frac{k}{a}$
c)There is no differe d)Molecularity is alw for a single step rea a) zero Which of the followin a) For a zero order b) Both order and n c) Active mass of 1 d) For the first orde h alv ed . f 'a' is the initial cor f is of zero order, w a) K 2a	ways a positive whole num action A + 2B [®] Products, (b) 1 ng statement is false ? reaction, the rate change nolecularity of a reaction .28 g of HI present in a t er reaction, the rate of re ncentration of the reactar ill be (b) ^a / _{2k}	mber. the molecularity is (c) 2 es with temperature. are always the same. wo litre flask is 0.5. eaction halved as the co of, the time taken for con (c) a/k eps as follows.	(d) 3 oncentration of a reactangletion of the reaction, (d) $\frac{k}{a}$
c)There is no differe d)Molecularity is alw for a single step rea a) zero Which of the followin a) For a zero order b) Both order and n c) Active mass of 1 d) For the first orde h alv ed . f 'a' is the initial cor f is of zero order, w a) K 2a	ways a positive whole num action A + 2B [®] Products, (b) 1 ng statement is false ? reaction, the rate change nolecularity of a reaction .28 g of HI present in a t er reaction, the rate of re ncentration of the reactar ill be (b) ^a / _{2k}	mber. the molecularity is (c) 2 es with temperature. are always the same. wo litre flask is 0.5. eaction halved as the co t, the time taken for con (c) a/k	(d) 3 oncentration of a reactangulation of the reaction,
 c) There is no difference d) Molecularity is alweight For a single step reading a) zero Which of the following a) For a zero order b) Both order and n c) Active mass of 1 d) For the first order h alv ed . a' is the initial core f is of zero order, weight 	ways a positive whole nur action A + 2B [®] Products, (b) 1 ng statement is false ? reaction, the rate change nolecularity of a reaction 28 g of HI present in a t er reaction, the rate of re ncentration of the reactar ill be	mber. the molecularity is (c) 2 es with temperature. are always the same. wo litre flask is 0.5. eaction halved as the co	(d) 3 oncentration of a reactangulation of the reaction,
c)There is no differe d)Molecularity is alw for a single step rea a) zero Which of the followin a) For a zero order b) Both order and n c) Active mass of 1 d) For the first orde h alv ed . f 'a' is the initial cor	ways a positive whole num action A + 2B [®] Products, (b) 1 ng statement is false ? reaction, the rate change nolecularity of a reaction .28 g of HI present in a t er reaction, the rate of re	mber. the molecularity is (c) 2 es with temperature. are always the same. wo litre flask is 0.5. eaction halved as the co	(d) 3 oncentration of a reacta
 c)There is no difference d)Molecularity is alweight For a single step reading a) zero Which of the following a) For a zero order b) Both order and n c) Active mass of 1 d) For the first order h alv ed . 	ways a positive whole nur action A + 2B [®] Products, (b) 1 ng statement is false ? reaction, the rate change nolecularity of a reaction .28 g of HI present in a t er reaction, the rate of re	mber. the molecularity is (c) 2 es with temperature. are always the same. wo litre flask is 0.5. eaction halved as the co	(d) 3 oncentration of a reacta
c)There is no differe d)Molecularity is alw for a single step rea a) zero Which of the followin a) For a zero order b) Both order and n c) Active mass of 1	ways a positive whole nur action A + 2B [®] Products, (b) 1 ng statement is false ? reaction, the rate change nolecularity of a reaction .28 g of HI present in a t	mber. the molecularity is (c) 2 es with temperature. are always the same. wo litre flask is 0.5.	(d) 3
c)There is no differe d)Molecularity is alw For a single step rea a) zero Which of the followin a) For a zero order b) Both order and n	ways a positive whole nur action A + 2B ® Products, (b) 1 ng statement is false ? reaction, the rate change nolecularity of a reaction	mber. the molecularity is (c) 2 es with temperature. are always the same.	
c)There is no differe d)Molecularity is alw For a single step rea a) zero Which of the followin a) For a zero order	ways a positive whole nur action A + 2B ® Products, (b) 1 ng statement is false ? reaction, the rate change	mber. the molecularity is (c) 2 es with temperature.	
c)There is no differe d)Molecularity is alv For a single step rea a) zero Which of the followin	ways a positive whole nur action A + 2B [®] Products, (b) 1 ng statement is false ?	nber. the molecularity is (c) 2	
c)There is no differe d)Molecularity is alv For a single step rea a) zero	ways a positive whole nur action A + 2B ® Products, (b) 1	nber. the molecularity is	
c)There is no differe d)Molecularity is all For a single step rea	ways a positive whole nur action A + 2B ® Products,	nber. the molecularity is	
c)There is no differe d)Molecularity is alv	ways a positive whole nur	nber.	n.
c)There is no differe		-	n.
•	ance hetween order and r	nolecularity of a reactio	n
cuualiun.			
b)Molecularity of a i equation.	reaction is the number of	molecules of the reacti	on present in the balanc
-	reaction is the number of		-
	ng statements is incorrec		
a) 1	(b) 2	(c) 3	(d) 4
	f reaction is 5 ′ 10-2 litr		
•	of concentration	(d) only concentration	
a) only time		(b) time and concentra	
The dimensions of the	ne rate constant of a third	d order reaction involve	
(a) 1	(b) 2	(c) 3	(d) 0
The rate constant o	f reaction is 3 ′ 10-3 ba	r-1 sec-1. The order o	f reaction is
a) third order	(b) second order	(c) first order	(d) zero order
The rate constant of	f a reaction has same un	its as the rate of reacti	on. The reaction is of
a) litre sec-1	(b) litre mole-1 sec-1	(c) mole litre-1 sec-1	(d) mole sec-1
The unit of rate con	stant for a zero order rea	action is	
a) r = K [A][B]2	(b) r = K [A][B]	(c) r = K [A]½[B]	(d) r = K [A]2[B]
eaction rate by 8 t eaction rate. The ra			
(a) (h) (a) (a) (a) (a)	r = K [A][B]2 e unit of rate con litre sec-1 e rate constant o third order e rate constant o 1	e unit of rate constant for a zero order realitre sec-1 (b) litre mole-1 sec-1 e rate constant of a reaction has same un third order (b) second order e rate constant of reaction is 3 ´ 10-3 ba 1 (b) 2	r = K [A][B]2 (b) r = K [A][B] (c) r = K [A]½[B] e unit of rate constant for a zero order reaction is litre sec-1 (b) litre mole-1 sec-1 (c) mole litre-1 sec-1 e rate constant of a reaction has same units as the rate of reaction third order (b) second order (c) first order e rate constant of reaction is 3 ´ 10-3 bar-1 sec-1. The order of

43.	For reaction first order is				
	(a) t= K 2́.303log [/	[A] A]o	(b) $K = \frac{2.303}{t} \log \left[A \right]$] o	
	(c) [A]=[A].e-Kt		(d) $K = \frac{2.303}{t} \log \frac{a}{a+1}$	x	
44.	For the reaction Zerc	order			
	(a) t _1⁄2 aCo2	(b) t1a \sqrt{Co}	(c) t1aCo-1	(d) t1aCo	
45.	For reaction first orde	er			
	(a) $t_{\frac{1}{2}} = \frac{0.693}{k}$	(b) t $\frac{1}{1/2} = \frac{0.693}{100}$	(c) t $\frac{1}{\frac{1}{2}}$ a $\frac{0.693}{1}$	(d) t1 $_{/_2}$ a $\frac{0.693}{100}$	
46.	Which of the followin	g represents the expres	sion for ¾th life of a firs	st order reaction	
	(a) $\frac{k}{2.303} \log \frac{4}{3}$	(b) $\frac{2.3030}{k} \text{ og } \frac{3}{4}$	(c) $\frac{2.303}{k}$ lbg4	(d) $\frac{2.303}{k}$ log3	
47.	If initial concentration is	n is doubled, the time fo	or half reaction is also do	oubled. The order of reaction	
48.	(a) First If a is the initial conce is proportional to	(b) Second entration of the reactant	(c) Third t, the half life period of t	(d) Zero he reaction of the nth order	
	(a) an+1	(b) a1-n	(c) an	(d) an-1	
49.	For the first order reared uce to 1/gthof its v		The time required for th	e initial concentration to	
	(a) 28 s	(b) 42 s	(c) (14)2 s	(d) (14)3 s	
50.	In the first order reac half life period of the		of the reactants is reduc	ed to 25% in one hour. The	
	(a) 120 min	(b) 4 hr	(c) 30 min	(d) 15 min	
51.		action with half life is 15 om m/10 to m/100 will l		en for the concentration of	
	(a) 600 s	(b) 900 s	(c) 500 s	(d) 1500 s	
52.	hour will be			t of substance left after one	
	(a) $\frac{1}{2}$	(b) $\frac{1}{4}$	(c) $\frac{1}{8}$	(d) $\frac{1}{16}$	
53.		05 [®] 2NO2 + ½O2 t½ = remain after a period of	_	10 g of N2O5 how many	
	(a) 0.63 g	(b) 0.5 g	(c) 1.77 g	(d) 1.25 g	
54.	In the first order read of reaction.	ction 75% of reactant d	isappeared in 1.386 h.	Calculate the rate constant	
	(a) 3.6 ′ 10-3 S-1	(b) 2.8 ′ 10-4 S-1	(c) 17.2 ′ 10-3 S-1	(d) 1.8 ′ 10-3 S-1	
			N		

55.	The minimum amount (a) potential energy		he reacting molecules to (c) activation energy	o undergo reaction is called: (d) threshold energy
56.	Increase in the concer (a) heat of reaction		s leads to the change in (c) collision energy	
57.		f an exothermic reaction		(d) derivation energy
07.	(a) zero		(b) negative	
	(c) positive		(d) can not be predicat	ed
58.		s in which reactants req		vation energy are generally
	•• ••• •••			
	(a) slow	(b) fast	(c) instantaneous	• • •
59.			f temperature because	
	. ,	number of activated mol	lecules	
	(b) an increase in the r			
	(c) lowering of thresho	0.		
(0)	(d) activation energy is The activation energy (
60.		- Energy of the products		
		Energy of the reactants		
		Energy of the reactant		
		Energy of the products		
61.		st satisfactory for		
01.	(a) First order	(b) second order	(c) Bimolecular	(d) Any
62.	If Ef and Er are the act known to be exotherm		forward and reverse rea	ctions and the reaction is
	(a) Ef < Er	(b) Ef > Er	(c) Ef >>> Er	(d) Ef = Er
63.	Which of the following	g does not affect the ra	te of reaction ?	
	(a) size of the vessel		(b) physical state of rea	actants
	(c) amount of the reac		(d) DH of reaction	
64.	For a an endothermic r the energy of activatio		the enthalpy of reactior	n. The minimum value for
	(a) equal to DH	(b) zero	(c) more than DH	(d) less than DH
65.			on energy of 15 Kcal mo ation energy for the rea	
	(a) 10 Kcal mole-1	(b) 20 Kcal mole-1	(c) 15 Kcal mole-1	(d) zero
66.			rgy of 70 KJ mole-1 an rgy for the reverse reac	d the enthalpy change of tion is
	(a) 70 KJ mole-1	(b) 30 KJ mole-1	(c) 40 KJ mole-1	(d) 100 KJ mole-1
67.	The rate constant of the	he reaction increases b	у	
	(a) increasing the temp		(b) increasing the conc	entration of reactants
	(c) carrying out the rea	action for longer period	(d) adding catalyst	
			`	
		—— 218	·	

68. Which of the following is the expression for Arrhenius equation? (a) $\Box_{k1}^{n} = \frac{Ea \approx 1}{C_{part1}^{2}} - \frac{1}{T2 \div c_{qart1}^{2}}$ (b) []nk=[]nA-Ea (c) k=A.e -Ea/RT (d) All the above The Plot of log K vs (a) Activation energy $\frac{1}{T}$ helps to calculate 69. (b) Rate constant (c) Reaction order (d) Activation energy and frequency factor At 290 K velocity constant of a reaction was found to be 3.2 ' 10-3. At 300 K, it will be 70. (b) 6.4 ' 10-3 (c) 3.2 ' 10-4 (a) 1.6 ' 10-3 (d) 3.2 ' 10-2 The increase in reaction rate as a result of temperature rise from 10 K to 100 K is ... 71. (a) 512 (b) 614 (c) 400 (d) 112 At 300 K rate constant is 0.0231 min-1, for a reaction. Bt at 320 K rate constant is 0.0693 min-1. 72. The activation energy of the reaction is (a) 84 KJ mole-1 (b) 34.84 KJ mole-1 (c) 43.84 KJ mole-1 (d) 30 KJ mole-1 The activation energy of a reaction is 9 Kcal mole-1. The increase in the rate constant when its 73. temperature is raised from 295 to 300 K is approximately (a) 1.289 times (b) 12.89 times (c) 0.1289 times (d) 25% 74. A reactant A forms two products. (i) A ³/₄k³/₄1[®] B activation energy E (ii) A ³/₄k³/₄2[®] C activation energy E If E2 = 2E1 then K1, and K2 are related as (a) K=K.eE1 (b) K=K.eE2 (c) K=AK.eE1 (d) K1=2K2.eE $\frac{2}{RT}$ 75. The activation energys of two reaction are EL and E2 (E1 > E2). If the temperature of the system is increased from Tto T, the ra te constant of the reaction changes from K1 to K2¹ in the first reaction and Kto K1 2 in second reaction, predict which of the following expression is correct? k12 (a) $\frac{k}{1} > \frac{k}{1}$ (b) $\frac{k}{1} < \frac{k}{1}$ (c) $\frac{k}{1} = \frac{k2}{1}$ (d) $\frac{k_1^1}{k_1} = \frac{k_2^1}{k_2} = 0$ The fate of reaction $2x + y = \frac{1}{k} \operatorname{Products}^{2}$. Rate = $K[x] = \frac{1}{2}[y]$. If x is present in large excess, the order of the reaction is $k + \frac{1}{k} = \frac{1$ 76. (c) 1¹ (a) 31 2 2 (b) 2¹ (d) 0 CH 3COOEt + H2O ³/₄H³/₄+[®] CH3COOH + Et OH. Order of reaction is ... 77. (b) 1 (c) 2 (d) 3 (a) 0 In which of the following cases, does the reaction go farthest to completion ? 78. (a) K = 100 (b) K = 10-2 (c) K = 10 (d) K = 1

79.	(a) increase with ir	ncrease of temperature	ne rate constant of the reaction (b) decrease with increase of temperature (d) is nearly independent of temperature	
80.		decrease of temperature ving is the fast reaction ?	(d) is nearly indeper	ndent of temperature
	(a) H 2+ Cl 2 ^{3/3H20} /4/4/4	®2HCl	(b) NO2+CO®NO+C	02
	(c) CH3CHO [®] CH4+	·CO	(d) 6CO2+6HO ³ / ₂ H ³ / ₂	420¾®C6H12O6+6O2
81.	Oxidation of oxalic of the following?	acid by acidified KMnO	1 is an example of auto	ocatalysis. It is due to which
	(a) SO2- 4	(b) MnO2 ₄	(c) Mn2+	(d) K+
82.		rder of the reaction if douk 4 and trebling the conce		n of a reactant increases the ant by a factor of 9 ?
	(a) 1	(b) 2	(c) 3	(d) 0
83.		a particular reaction is for ne reactants then reaction		nd independent of the initial
	(a) 1	(b) 2	(c) 3	(d) 0
84.		n A + B + C [®] Products is g of the reaction would be	iven by r = K[A][B]o[C]]. If A is taken in large
	(a) 0	(b) 1	(c) 2	(d) nil
85.	Rate of chemical r	eaction can be kept const	ant	
	(a) by stirring the c	components	(b) by keeping the t	emperature constant
	(c) both of the abo	ove	(d) none of the abo	ve
86.	The one which is u	nimolecular reaction is		
	(a) HI [®] H+ $\frac{1}{22^{2}}$ $\frac{1}{2}$	2HCl	(b) NO ₂ [®] N ₅ 0+0 _{2 4}	$\frac{1}{2}$ 2
	(c) H		(d) PCl3+Cl2 [®] PCl5	
87.	For the reaction H	2(g)+ Br2(g)® 2HBr (g) the	e experimental data sı	uggests, rate = K[H2][Br2]. $\frac{1}{2}$
	The molecularity a	nd order of reaction respe	ctively for the reactior	n is
	(a) 2, 2	(b) 2, 1½	(c) 1½, 2	(d) 1½, 1½
88.	The rate of reaction	on for Cl 3 C CHO + NO ® (CHCl3 + NO + CO is g	iven by equation, rate
		NO]. If concentration is ex ec-1 (b) mole litre-1 sec-1		
89.		+ B [®] Products, the active of reaction will then	ve mass of B is kept o	constant and that of A is
	(a) increase two tii	nes	(b) increase four tim	nes
	(c) decrease two t	imes	(d) decrease four ti	mes
90.		A [®] B follows second order of formation B by a factor	•	e concentration of A will
	(a) ½	(b) 2	(c) ½	(d) 4
			_	
		22	· >	

91.	Ethyl acetate is hyd respectively	drolysed in alkaline med	dium, its order of a rea	action and molecularity are
	(a) 1, 1	(b) 1, 2	(c) 2, 1	(d) 2, 2
92.		henius equation a straig a reaction against	sht line is to be obtaine	ed by plotting the logarithm of
	(a) T	(b) log T	(c) 1/T	(d) log 1/T
93.	The given reaction 2FeCl	3 +SnCl2 [®] 2FeCl2	2 +SnCl4 is an exampl	e of reaction
	(a) first order	(b) second order	(c) third order	(d) none of these
94.	In the reverable rea	ction $2NO \frac{1}{2}K \frac{1}{2} N$	204, the rate of disap	pearance of NO2 is equal to
	$(a \frac{2K_1}{K_2}[NO_2]2$		(b) 2k 1 [NO ² 2]	-2k2 [N2O4]
	(c) 2k1[102]2k2	2[N2O4]	(d) (2k1-k2)[N	102]
95.	If concentration of	reactants is increased b	y 'x', then rate consta	nt K becomes
	(a)□ n <mark>k</mark>	(b) <u>k</u>	(c) k+x	(d) k
96.	The rate constant is	s given by equation K = proceed more rapidly ?	o.z.e-Ea/RT which fact	tor should register a decrease
	(a) E	(b) T	(c) Z	(d) P
97.	For the reaction A +	B ¾k¾® C. the unit of ra	te constant is	
	(a) sec-1	(b) sec-1 mole L-1	(c) sec-1 mole-1 L	(d) sec-1 mole-2 L2
98.		eous reaction is equal t th of the initial volume.		e of the vessel is suddenly vould be
	(a) $\frac{1}{16}$	(b) $\frac{16}{1}$	(c) $\frac{1}{8}$	(d) $\frac{8}{1}$
99.		Z [®] Product, rate contro rate of reaction will be		Q. If the concentration
	(a) remain the same		(b) become four tin	nes
	(c) become 1.414 t	mes	(d) become double	
100.				
	(a) m+n	(b) n-m	(c) 2(n-m)	(d) ¹ 2(m+ n)
101.	The time for half life			When the initial concentration
101.		2 mol L-1 how much tir	ne does it take for its o	concentration to come from
	0.50 to 0.25 mole	L-1 if it is a zero order	reaction ?	

102.	For a first order reaction A [®] Products, the concentration of A changes from 0.1 M to 0.025 M in 40 minutes. The rate of reaction when the concentration of A is 0.01 M is				
	(a) 1.73 ′ 10-4 M min	-1	(b) 1.73 ′ 10-5 M min	1-1	
	(c) 3.47 ′ 10-4 M min	-1	(d) 3.47 ´ 10-5 M min	1-1	
103.	 In the reaction 2N2O5 [®] 4NO2 + O2, initial pressure is 500 atm and rate constant K is 3.38 10-5 sec-1. After 10 minutes the final pressure of 2005 is 				
	(a) 490 atm	(b) 250 atm	(c) 480 atm	(d) 420 atm	
104.	The half life period of a first order reaction is 6.93 minutes. The time required for the completion of 99% of chemical reaction will be				
	(a) 230.3 min	(b) 23.03 min	(c) 46.06 min	(d) 460.6 min	
105.	The rate constants K a respectively. The tem	and K fo ₂ r two diffen operature at which K1 =	rent reactions are 10.e ¹ K2 is	^{16-2000/T} and 10. ^{45-1000/T}	

(a) 1000 K	2000 (b) 2.303 k	(c) 2000 K	(d) $\frac{1000}{2.303}$ k
		()	2.303

1	С	2	a	5	С	76	С	10	а
2	b	6	С	1	d	77	b	1	С
3	- d	2	b	5	a	78	a	10	a
4	a	7	d	2	b	79	d	2	C
5		2	C C		d	80	d	10	d
6	d d	8	d	3	C C	81	C	3	
7	a	2		-5-		82	b	10	
8	a	9	d	4	a	83	a	4	
	d d	3	b b		a	84	b	10	
10	d d		- c	5	b -	85	d	5	
11		3	d	5	- c	86	b	Ű	
12	a a		Č	6	a	87	b		
13	b	3	d	5	b b	88	Č		
14		2	b	7		89	b		
15	a	3	C	5	a	90	d		
16	С	3	b	8	d	91	d		
17	b	3	b	5	a	92	C		
18	d	4	C	9	d	93	C		
19	c	3	d	6	d	94	b		
20	c	5	a	0	b	95	d		
21	b	3	C	6	a	96	a		
22	d	6	d	1	C	97	C		
23	b	3	b	6	a	98	b		
24	b	7	b	2	C	99	C		
25	C	3	C	6	a	100	C		
	-	8	-	3	-		-		
L	1	3			ـــــــــــــــــــــــــــــــــــــ				
		9		-√	↗				
		4		6					
		0		5					
		4		6					

ANSWER KEY

Hi nts

1. Defination of the rate of reaction

 $-\frac{1}{2}\frac{d[A]}{dt} - \frac{d[B]}{dt} + \frac{1}{3}\frac{d[C]}{dt}$ 2. 3. the activation energy of the reaction is large 4. 0.2 10-4 $\frac{d[H2]}{dt} = -0.310 M_{s} \qquad -1 \qquad \text{Byt} \quad \text{Rate} = -\frac{1}{3} \frac{d[H2]}{dt} = +\frac{1}{2} \frac{d[NH]}{dt}$ Hence $\frac{d[NH3]}{dt} = \frac{2}{3} \frac{d[H]}{dt} = -\frac{2}{3} (-0.3 \ 1004) \pm 0.4$ $- \frac{1}{4} \frac{d[A]}{dt} - \frac{d[B]}{dt} + \frac{1}{2} \frac{d[C]}{dt} + \frac{d[D]}{dt}$ 5 DH of reaction 0.012 atm min⁻¹ 6 $-\frac{d[NO4]}{dt} = +\frac{1}{2}\frac{d[NO2]}{dt}$ 7 $-\frac{(0.32-0.50)}{30} = 0.006 = \frac{1}{2} \frac{d[N_{2}0]}{dt} \int \frac{d[N_{2}0]}{dt} \int \frac{d[N_{2}0]}{dt} = 0.012 \text{ atm min -1}$ 8. $K = K \ 1/K2$ $\frac{1}{4} \quad \text{Rate} = \mathbf{k} \left[\tilde{A} \left[A \right]^{\frac{1}{3}} \right] \mathbf{1} \mathbf{c} \qquad \forall \text{Orderof reaction} = \frac{1}{2} + \frac{1}{3} + \frac{1}{1} = \frac{11}{6}$ 9. 10. $(p+q) = (m+n) \text{ or } (p+q)^{1} (m+n)$ Rate = K[A][B]211. Keeping [B] constant, [A] is made a 4 times, rate also become 4 times. Hence rate a [A] Keeping [A] constant, [B] is doubled, rate becomes 4 times. Hence rate a [B]2 rate = K[A][B]2rate = K[A]212. [A] doubling, rate becomes four time. Hence rate a [A]2 [B] doubling, no effect on the rate. Hence rate a [B]0 concentration of reactants 13 temperature is changed 14 H +Cl ¾¾® 2HCl 2 2 _{® 2HBr} H +Br 15 2 2 223

17 Unimolecular reaction any value between 1 and 3 . 18 $\frac{1}{3}$ $\frac{k2}{k1} = \hat{e}_{2}^{A} \hat{u}^{n}$ Or 2 = (8)n\n = $\frac{1}{3}$ 19. four times rateaB] 20 $8 \times \sqrt{1} = k_{1}^{2} B = x \sqrt{2} = k_{2}^{2} N^{2} = 8x$ OO \No I 2 in the rate law equation. 21 rate of zero order reaction is independent of the concentration of the reacting species many bady collisions have a low probability rate = K[A][B]2Rate of reaction for slowest step 22 1.5 From slowest step rate + AKB 23 From 1st eq. $Keq = [A_2^{2}] [A] = keq^{2} [A_2^{3}]$ 24 rate = K[B]keq2*[A]2=k keq2 $^{1/2}$ [A2]2[B2] = K1[A2]2[B2] C [®] D is lowest 23. rate '= k [A] [B] 2ate ''= k 2Aê] éB 28. halved $=\frac{1}{2}k[A][]2B$ $x''=\frac{1}{2}x'$ $\frac{1}{4}$ (1)r = k[] $\frac{1}{102}$ A2r = k16A] n 29. $2r = KA \int nL6n$ $\frac{2r}{r} = \frac{KA[]^{n} \beta n}{K A]} \quad \forall 2 = 16n \forall n = \frac{1}{4}$ 30. 2 cocentration increased = 10 times rate increased = 102 times $\ \ Order = 2$ r = K[A]2[B] (i) $r = k[A]^{x}[B]^{y}$ (ii) $8r = k[2A \times 2B]y$ (iii) $2r = k[A \times 2B]y$ 31. (iii) $(i) @2^{y} = 2 \setminus \overline{y} 1$ (ii) (i) @2 = $4 \times = 2$

32. mole litre⁻¹ sec⁻¹ rate=K[R]fr =
$$\frac{\operatorname{rate}}{[R]n} = \frac{M/s}{m}n = 0$$

K=M1-n S-1\ K = MY
33. zero order K = $\frac{\operatorname{rate}}{[R]n}K$ = rate, when n = 0
34. 2 K = $\frac{\operatorname{rate}}{[R]} = \frac{\operatorname{bar}/s}{\operatorname{bar}^n}$ when n = 2 k = bar⁻¹S⁻¹
35. time and square of concentration
K = $\frac{\operatorname{rate}}{[R]n} = \frac{M/S}{Mn} = M1-nS-2when n = 3$ k = litre3 mole-1 min-1
36. 4 K = $\frac{\operatorname{rate}}{[R]n} = \frac{M/S}{M^n} = MS^n when 4 = k$ Here mole min ⁻¹
37. There is no difference between order and molecularity of a reaction.
38. Both order and molecularity of a reaction are always the same.
39. $\frac{3}{4}$ K For Zero order reaction $t = \frac{1}{k} \left[\frac{h}{k} \right]_{-} \left[A \frac{h}{k} \right]_{+} A \left[\right] O^{-a}$
And when reaction corn $\frac{1}{k} = \frac{1}{k} \left[\frac{h}{k} \right]_{-} \left[A \frac{h}{k} \right]_{+} A \left[\right] O^{-a}$
49. $r = k[0]_{3}[0-12]$ From Slowest step $r = k[O^{3}]_{1}$
 $\cdot \left[O \right] = Keq[O] \left[D \right]_{+} A \left[0 \right]_{-} A \right]$
 $\cdot \left[A \right]_{-} A \right] O^{a} - kt$
43. $t_{\frac{1}{2}} a C_{a}$
 $\frac{45}{k}$ $t_{\frac{1}{2}} = \frac{0.693}{k}$
 $\frac{2.303}{k} \log 4$ $t_{\frac{1}{2}} = \frac{2.303}{a \operatorname{orao}^{-3}}_{-\frac{3}{4}} = \frac{2.303}{k} \log \frac{a0}{a \operatorname{orao}^{-3}}_{-\frac{3}{4}} = \frac{2.303}{k} \log \frac{a0}{k}$

47	Zero For Zero order reaction $t_{\frac{1}{2}}^{}$ a Co
	$a^{1-n} t_{\lambda^{2}} a a^{1-n}$
4 8.	42 S Ao $\frac{3}{4}\frac{3}{4}^{\oplus}$ $\frac{Ao}{2}\frac{3}{4}\frac{3}{4}^{\oplus}$ $\frac{Ao}{4}\frac{3}{4}\frac{3}{4}\frac{3}{4}^{\oplus}$ $\frac{Ao}{8}$ 3 $\frac{3}{4}3$
50.	30 min 100% $\frac{3}{4}\frac{5}{2}$ 50 $\frac{3}{4}\frac{5}{4}$ 25% $=$ T 2t $\frac{1}{2}$ $\frac{1}{2}$
51.	500S $\frac{M}{10} \frac{3}{4} \frac{3}{4$
52.	$\frac{1}{16} \text{ After } n+t \frac{1}{2} \text{ amount left} = \frac{a}{2n}$
	T = n ' $t_{\frac{1}{2}}$ n = $\frac{6}{0}$ = 4 \ Amount left = $\frac{1}{2a} = \frac{1}{16}$
53.	0.63 g T = n ' $t_{\frac{1}{2}2} n = \frac{9}{6} = 4$ \ Amount left = $\frac{a}{2n} = \frac{10}{24} = \frac{10}{16} = 0.63$
54	2.8'10-4S-1K = $\frac{2.303}{1.386.60.60}$ $\log \frac{a}{a-0.75a}$ = 2.8'10-4 S-1
55	threshould energy. Collision frequency Positive Activation energy is always Positive
56	Slow an increase in the number of activated molecules.
57	Threshold Energy – Energy of the reactants Bimolecular
58	Ef < Er
•	DH of reaction more than DH
59	lo Kcal mole-1DH=Ea-Ear\+5=15-Ear\Ear=10
60	100 Kj mole-1DH=Ea-Ear-30=70-Ear\Ear=100
61	increasing the temperature. All the above
•	Activation energy and frequency factor.
62	3.2 ' 10–4 10k rise, the velocity constant becomes nearly double.
63	512 Increases of temperature n ´ 10 Increases reaction rate = 29
	DT = 100–10=90=9´10 \ n=9
64	\ Increases reaction rate = 29 = 512
65	226

•

72. 43.84 Kj mole
$$-\int_{0}^{1} \frac{K}{2306R} = \frac{Ea}{1112} \frac{x}{2} \frac{T2}{16} \frac{T}{2} \frac{T}{10} \frac{x}{2} \frac{T2}{10} \frac{T}{2} \frac{T}{2}$$

N205[®] N204+ $\frac{1}{2}$ O₂ 86 1 2, 12 litre mole-1 sec-1 87 increase four times 4 Rate=K[A] rate=K[2A]2.K[A]2 88 2, 2 CH COOC H5 + NaOH ® CH3COONa +C2H5OH . 89 1/ third order 90 2K1[NO2] -2[K N2]O For 2NO2 Rate = $-\frac{1}{2} \frac{d[ND]}{dt} = K \ln [p_2]^2 - K2 \ln 204$ 91 \rate= $\frac{-d[NQ]}{dt} = 2K \, \ln \phi \, _{2}^{2} - 2K \, \log (0 \, 4)$ 92 95 Κ Е : 98 Sec-1 mole-1 L \ Second order reaction $\frac{16}{1}$ Volume of the vessel is reduced to one foreth **98**. • Concentration bocomes 4 ttimes become 1.414 times Rate=KY] ZZ^{1/} 99. \NewRate = √2. k[Y] 2 ¥ 1.414 K[Y] Z^{1/2} 100. 2(n - m) r^{1} = kan bm $r^{1} = k(2a)_{g_{2}}^{ab} \ddot{c}^{m}$ $\frac{r^{11}}{r^1} = \frac{2n \text{ an } bm^m a}{anbm} = 2n.2^m = 2(n-m)$ 101. 0.25 h For Zero order reaction $K = \frac{[A]}{2t_{12}} = \frac{2}{2} = 1 \text{ molL-1 hr}^{-1}$ $t = \frac{[A] - [A]}{\kappa} = \frac{0.50 - 0.25}{1} = 0.25 hr$